Número 18-2 (Julio)

Geometric reasoning vs definition of concepts: the definition of square with 6th grade students

Ana Paula Aires
Helena Campos
Ricardo Poças

Disponible en: I I I

Resumen: La geometría a pesar de ser considerada un tema de gran importancia sigue siendo, sin embargo, un tópico en el cual los estudiantes muestran, todavía, muchas dificultades. En este trabajo, hemos analizado la forma en cómo visualizan y presenta la idea de cuadrado un grupo de estudiantes del sexto grado. Esta investigación ha permitido caracterizar la posición del razonamiento geométrico de cada estudiante teniendo como base los niveles de van Hiele. Los resultados obtenidos permiten concluir que el nivel de razonamiento geométrico de los alumnos es menor de lo deseable y necesario a esta fase de aprendizaje en Geometría. Además, la definición del cuadrado presentada por la mayoría de los estudiantes está basada solamente en la congruencia de los lados. Así ambos resultados muestran que los alumnos tienen dificultades en la jerarquía de las propiedades geométricas, hecho que los autores consideran pertinente para seguir investigando, sea en el campo de las posibles causas, sea en cómo intervenir en el aula, así como la formación inicial y continua de los profesores.

Palabras clave: Razonamiento geométrico, niveles de van Hiele, conceptos geométricos, definición, cuadrado.
Geomtric reasoning vs. definition of concepts: The definition of square with 6th grade students

Ana Paula Aires
Universidade de Tras-os-Montes e Alto Douro, UTAD, Centro de Investigação Didática e Tecnologia na Formação de Formadores (CIDTFF), Portugal
Helena Campos
Universidade de Tras-os-Montes e Alto Douro, UTAD, Centro de Investigação Didática e Tecnologia na Formação de Formadores (CIDTFF), Portugal
Ricardo Poças
Universidade de Tras-os-Montes e Alto Douro, UTAD, Portugal

Recepção: 08 Novembro 2012

Aprovação: 16 Dezembro 2013

Financiamento

Fonte: COMPETE -Programa Operacional Fatores de Competitividade

Número do contrato: PEst-C/CED/ UI0194/2013

Resumo: A geometria apesar de ser reconhecidamente considerada um tema de grande importância, continua, no entanto, a ser um tópico em que os alunos revelam, ainda, muitas dificuldades. Com este trabalho, analisou-se um grupo de alunos do 6.º ano de escolaridade, relativamente à forma como eles visualizam e apresentam a definição do conceito de quadrado. Esta investigação permitiu caraterizar o posicionamento de cada um dos alunos quanto ao seu raciocínio geométrico, tendo por base os níveis de van Hiele. Os dados recolhidos permitem concluir que o nível de raciocínio geométrico apresentado pelos alunos é inferior ao desejável e necessário para alunos nesta fase de aprendizagem da Geometria. Além disso, também a definição de quadrado apresentada pela maioria dos alunos baseia-se apenas na congruência dos lados. Deste modo, ambos os resultados revelam que os alunos possuem dificuldades na hierarquização de propriedades geométricas, facto que os autores consideram pertinente continuar a investigar, quer no domínio das possíveis causas, quer ao nível de formas de intervenção na sala de aula, bem como na formação inicial e contínua de professores.
Palavras-chave: Raciocínio geométrico, níveis de van Hiele, conceitos geométricos, definição, quadrado.

Abstract: Despite being considered a major issue, Geometry remains as a topic in which students still show many difficulties. In this paper, we analyzed how the square concept is displayed and presented to a sixth grade group. Based on van Hiele levels, the research allow us characterized the geometric reasoning of each student. The results indicate that the reasoning level reached by them is lower than the one we desire and need on in this phase of Geometry learning. Furthermore, in most of the cases, the square definition presented by them is based only on the consistency of the sides. Evidence shows too that students have difficulties on the geometrical properties hierarchy, a fact which the authors consider relevant for further research, whether in the field of possible causes, either in how to intervene in the classroom as well as on initial and continuous teachers training.
Keywords: Geometric reasoning, van Hiele levels, geometric concepts, definition, square.

Résumé: La géométrie malgré d'être considéré comme un problème majeur reste, cependant, un sujet dans lequel les élèves révèlent encore beaucoup de difficultés. Dans cet article, nous avons analysé un groupe d'étudiants de la 6eme année, sur la façon dont ils voyaient et présentaient la définition de carré. Cette recherche a permis de caractériser la position de chacun des élèves face à son raisonnement géométrique, basé sur les niveaux de van Hiele. Les résultats obtenus permettent de conclure que le niveau de raisonnement géométrique présenté par les étudiants est moins que souhaitable et nécessaire pour les étudiants à ce stade de l'apprentissage de la géométrie. En outre, la définition d'un carré présenté par la plupart des étudiants est basée uniquement sur les compatibilités des côtés correspondants. Ainsi, les deux résultats montrent que les élèves ont des difficultés dans la hiérarchie des propriétés géométriques, fait que les auteurs considèrent pertinent d'étudier plus avant, dans le domaine des causes possibles, à la fois en termes de formes d'intervention dans la salle de classe et dans la formation initiale et continue des enseignants.
Mots clés: Raisonnement géométrique, niveaux de van Hiele, concepts géométrique, définition, carré.

Licencia Creative Commons

Todos los artículos publicados en Relime están bajo la

 Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.  

23 volúmenes, 67 números regulares, 3 números especiales y 393 artículos en total

esenfrdeitptru
REVISTA LATINOAMERICANA DE INVESTIGACIÓN EN MATEMÁTICA EDUCATIVA – RELIME,
es la publicación de investigación oficial del Comité Latinoamericano de Matemática Educativa A. C. Editada por el Colegio Mexicano de Matemática Educativa, A.C., calle av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360. Tels. (52) + (55) 57-47-38-00 ext. 6043 Dr. Ricardo Arnoldo Cantoral Uriza, (52) + (55) 57-47-38-00 ext.6057 Dra. Daniela Reyes Gasperin, (52) + (55) 57-47-38-19 Susana Gómez Vargas, (52) + (55) 57-47-38-00 ext 6012 Dra. Gisela Montiel Espinoza, (52) + (55) 57-47-38-00 ext.6008 Ing. Martha Maldonado Rosales.
Reservas de Derechos al Uso Exclusivo, No. 04-2016-110914351000-102, con ISSN: 1665-2436, para el formato impreso; y No. 04-2016-110413025500-203, con e-ISSN: 2007-6819, para el formato digital; otorgados por el Instituto Nacional del Derecho de Autor. Derechos Reservados © Colegio Mexicano de Matemática Educativa, A.C. RFC: CMM 040 505 IC7. Publicación cuatrimestral. Se publica en los meses de marzo, julio y noviembre, con el financiamiento del Clame. 
Impresa por Editorial Progreso, S.A. de C.V., Sabino No. 275, Col. Sta. María la Ribera, C.P. 06400, Delegación Cuauhtémoc, México, CDMX.
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación
Todos los artículos publicados en Relime están bajo la Licencia Creative Commons