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A SEMIOTIC VIEW OF MATHEMATICAL ACTIVITY WITH A COMPUTER 
ALGEBRA SYSTEM

RESUMEN. En este artículo defendemos la tesis de que un marco semiótico permite entender mejor
como el uso de un Sistema Computarizado para Algebra (CAS) puede ayudar, o limitar, la actividad
matemática. Este trabajo se sitúa en un marco teórico en el que hacer y aprender matemática es
considerado un comportamiento semiótico. Partiendo de la noción de signo triádico (representamen,

representamen (representación) en el estudio de un objeto matemático puede ayudar al estudiante a
producir varios interpretados (interpretaciones) para este objeto. Esos diferentes interpretados,
basados en diferentes representaciones, permiten un acceso epistemológico al objeto. Utilizamos la
distinción de Duval entre conversión y tratamiento para distinguir  las diferentes formas de actividad
semiótica con los CAS. Ilustramos este argumento mediante un extracto del diálogo entre dos
estudiantes universitarios mientras resuelven un problema matemático usando las CAS.

PALABRAS CLAVE: Semiótica, sistema computarizado para álgebra, conversiones e tratamientos,
signo de Peirce, polinomio de Mac Laurin.

ABSTRACT. I argue that a semiotic framework enables a rich understanding of how the use of a
computer algebra system (CAS) may enable, or constrain, mathematical activity. This argument is
rooted in a framework in which the doing and learning of mathematics is regarded as a semiotic
endeavour. Using Peirce’s notion of a triadic sign (representamen, object and interpretant), I
argue that the ability of the student to move between different representamen (representations) of
the same mathematical object with CAS may help the student generate different interpretants (ideas
in the mind) for this object. These multiple interpretants, based on multiple representamen, enable
epistemological access to the object. I use Duval’s distinction between conversions and treatments
to distinguish between the different forms of semiotic activity with the CAS. To illustrate my
arguments I examine a vignette in which two undergraduate university students use CAS while
solving a mathematical problem.

KEY WORDS: Semiotics, computer algebra system, conversions and treatments, Peirce sign,
Maclaurin polynomial.

RESUMO. Neste artigo defendemos a tese de que um quadro semiótico permite perceber melhor
como o uso de um Sistema de Álgebra Computacional (CAS) pode apoiar ou limitar a actividade
matemática. Este trabalho situa-se num quadro teórico em que fazer e aprender matemática
é considerado um comportamento semiótico. Partindo da noção de signo triádico (representamen,

representamen (representação) no estudo de um objecto matemático pode ajudar o estudante a
produzir vários interpretados (interpretações) para esse objecto. Esses diferentes interpretados,
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baseados em diferentes representações, permitem um acesso epistemológico ao objecto. Utilizamos
a distinção de Duval entre conversão e tratamento para distinguir as diferentes formas de actividade
semiótica com os CAS. Ilustramos este argumento através de um extracto do diálogo entre dois
estudantes universitários enquanto resolviam um problema matemático usando os CAS.

PALAVRAS CHAVE: Semiótica, sistema de álgebra computacional, conversões e tratamentos,
signo de Peirce, polinómio de Mac-Laurin.

RÉSUMÉ. Dans cet article nous défendons la thèse qu’un cadre sémiotique permet de mieux
comprendre comment l’usage d’un programme informatique pour l’algèbre (CAS) peut aider,
ou contraindre, l’activité mathématique. Nous nous plaçons dans un cadre théorique dans lequel
faire et apprendre les mathématiques est considéré comme un comportement sémiotique. À partir
de la notion de signe triadique (representamen, objet, interprétant) développée par Peirce, nous

objet mathématique peut aider l’apprenant à générer différents interprétants pour cet objet. Ces
différents interprétants, basés sur  différentes représentations, permettent un accès épistémologique
à cet objet. Nous utilisons la distinction de Duval entre conversion et traitement pour distinguer
les différentes formes d’activité sémiotique avec les CAS. Cet argument est illustré par le protocole
d’un dialogue entre deux étudiants universitaires qui résolvent un problème mathématique avec
CAS.

MOTS CLÉS: Sémiotique, programme informatique pour l’algèbre, conversions et traitements,
signe de Peirce, polynôme de Mac Laurin.

1. BACKGROUND

In 2005 I introduced the CAS, Mathematica, into the Mathematics I Major
course at the South African university where I teach mathematics. Mathematica
is software which transforms the computer into a powerful calculator which the

on; it also has many inbuilt mathematical functions. The Mathematics I Major
course is a general course designed for students who intend to specialize in the
mathematical or physical sciences. The prescribed textbook for the course is
the American undergraduate mathematics textbook ‘Single Variable Calculus’ by
J. Stewart (2003).

My hope was that the introduction of CAS would support and enrich
mathematical learning. There were many reasons, both mentioned in the literature
and from my own experience, why this might happen. For example, the ability
of the user to use computer software to move between different representations of
mathematical objects may promote conceptual insight (Heid & Blume, 2008,
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Tall, Smith & Piez, 2008); the use of CAS to reify certain processes into objects
could potentially afford a new way of working with mathematical processes (for
example, one can use CAS to manipulate a function as if it were an object);
the separation of the execution of mathematical tasks by the computer from the
planning of mathematical tasks by the learner could result in an increased focus on
conceptual planning and problem

At the same time research, particularly from France, was beginning to show
that the introduction of technology into mathematics classrooms was unexpectedly
complex (for example, Artigue, 2002; Trouche, 2005). These researchers argue
that the successful introduction of technology involves the development of a
bidirectional relationship between user and artefact in which the learner has to
construct personal schemes which turn the artefact into an instrument for learning
and “the possibilities and constraints of the artefact shape the techniques and
conceptual understanding of the user” (Drijvers and Trouche, 2008, p. 368). This
process is called instrumental genesis.

With this research about the complexities and promises of technology as a
tool for mathematical learning in mind, I decided to monitor what was happening
in the computer laboratories of the Mathematics I Major course. My initial
observations derived from walking around the laboratories where the students
were engaging in CAS based tasks. These tasks were specially chosen from
the textbook (Stewart, 2003) or designed by me. The pedagogical intentions of the
tasks were to promote consolidation of mathematical ideas introduced in lectures,
or to anticipate new concepts that were about to be addressed during regular
lectures (six lectures a week). The students attended one hour sessions fortnightly
in the computer laboratories. They were also free to use the computers in their
own time.

2. A SEMIOTIC APPROACH

While observing students, I was aware of the well-known epistemological
problem: it is impossible to see or know what anyone is thinking. The researcher
has access to the person’s production and transformation of signs (for example,
utterances, algebraic symbols, numbers, or graphs). That is all. Accordingly, the
idea of using a semiotic perspective, which looks at the production of signs,
became an attractive possibility as a means to an understanding of the students’
mathematical activities.
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 2.1. What is a Sign?

C.S. Peirce (1839 1914), one father of modern semiotics1, proposed that all thinking
is performed upon signs of some kind or other, imagined or perceived. He argued
that signs are not only a means of signifying or referring to an object; rather they
are “means of thought, of understanding, of reasoning and of learning” (Hoffmann,
2005, p. 45). Thus a sign must be experienced meaningfully; it must signify to

tells one to go; it is not there to make one think of greenness. In the phrase ‘a = b’,
‘=’ is a sign which tells us that a and b are equal; it is not there to make us think of
the shape ‘ ’ or the combination of shapes ‘ ’ and ‘ ’.

According to Peirce (1998), all signs have a triadic structure: a representamen
(inscription) which refers to the form which the sign takes (not necessarily
material), an object (a physical thing or an abstract concept) and an interpretant
(the idea or meaning of the object for an individual). In this respect, Peirce’s

.

anything … which mediates between an object and an interpretant; since it is
both determined by the object relatively to the interpretant and determines the
interpretant in reference to the object, in such wise as to cause the interpretant
to be determined by the object through the mediation of this “sign”  (p. 410).

In this article, unless otherwise stated, I assume Peirce’s triadic structure
of a sign. Examples of mathematical representamen are symbols, words, graphs.

the rectangle. Examples of interpretants are ideas or interpretations generated in
an individual’s mind by the representamen of the object. For example, a graph of a
parabola with vertex at the origin and domain ( 10, 10) is a particular representation
(the representamen) of the mathematical object, a quadratic function. Different
individuals may construct different interpretants for this representamen (for
example, the shape of the parabola, the equation, y = ax2 + bx + c ). The role of the
interpretant in the making of meaning is crucial. The word ‘meaning’ is used “to
denote the intended interpretant of a symbol” (Peirce, 1998, p.218).

process in which an interpretant of one sign becomes a representamen of another”
(Sfard, 2000, p. 45). The interplay of signs leads to the possibility of a process
whereby the representamen stands for an object which entails an interpretant and
this interpretant in turn becomes the representamen for yet another object and so

1 In Europe, Saussure (1857 1913) was developing a different version of a theory of signs.
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on. This process is called semiosis. In ‘good’ learning, semiosis continues until the
learner is able to use the mathematical sign in a way that is meaningful to herself
and is commensurate with its use by the relevant mathematical community.

 2.2. Mathematics As a Semiotic System

During the last decades, a semiotic perspective has been developed and applied
to the nature of mathematics and mathematics education by, for example, Rotman
(1993), Duval (2001, 2006), Radford (2000, 2006), Otte (2006). Although these
semiotic accounts and their derivative versions differ in their formulations,
the essential basis of all these explications is the claim that the sign and its meaning
form a unity.

Rotman’s (1993) semiotic account of mathematics is well-elaborated.
His central argument is that mathematics is a written discourse in which
symbols and other inscriptions are manipulated in various ways according
to a large and complex set of rules. Crucially, he asserts that mathematical
thinking and mathematical objects are co created and mutually constituted
by the human mind in mathematical discourse. In semiotic terms, this means

the other and both evolve with each other.

that activity can be acceptable. It is simply not plausible – either historically or
conceptually – to ignore the way notational systems, structures and assignments
of names, syntactical rules, diagrams and modes of representation are

(ibid., p. 33).

Rotman’s view of mathematics is compatible with the Vygotskian
argument that language and symbols are constitutive of meaning, rather than just
representative of it: “Thought is not merely translated in words; it comes into
existence through them” (Vygotsky, cited in Sfard, 2000, p.45). Rotman’s account
provides a useful theoretical structure within which to position my particular
arguments although its focus is not on the learning of mathematics.

In contrast, Duval (2001, 2006) provides a useful formulation of the learning
of mathematics using a semiotic perspective. He argues that signs play several
fundamental roles in mathematics: they refer to mathematical objects, they allow
one to communicate about mathematics and they are necessary for mathematical
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processing. Furthermore there are a variety of semiotic representation systems,
each with its own possibilities, that are used in mathematical activity. The
semiotic representation systems comprise natural language (as used in proofs),
the registers of numeric, algebraic and symbolic notations, plane or perspective

is the transformation of one semiotic representation into another in the same or
different register (2006, p. 107). I will return to the different types of semiotic
representations particularly relevant to mathematical activity with CAS in
Section 2.5.

According to Duval, mathematical comprehension involves the capacity to
change from one register to another “because one must never confuse an object
and its representation” (ibid., p. 7). Duval calls the process of transforming the
representation (representamen) of a mathematical object from one register to
another,a“conversion”.Hearguesthat tworepresentationsof thesamemathematical
object in two different registers do not have the same content they may denote the
same object but different registers make different properties of the object explicit.
Duval also claims that transforming a representation within the same register is a
process intrinsic to mathematical activity. He calls this transformation a treatment.
An example of a treatment is solving an equation given symbolically within the
symbolic register. I will illustrate inter and intra register transformation of signs

representamen (Peirce) interchangeably to refer to the concrete instantiation of
a sign2.

Although Duval does not draw directly on Peirce or his triadic structure of
a sign, I suggest that Duval’s semiotic framework provides a useful elaboration
of aspects of Peirce’s semiotic framework to the mathematics education domain3.
In particular, Duval’s notion of treatments and conversions, in which one sign

process of semiosis.

 2.3. Semiotics and Appropriation of Knowledge

Since this article is in the realm of mathematics education, as opposed to

2  For an interpretant to function as a representamen, it needs to be articulated (for example, through
language, spoken or not, or symbols or visual imagery and so on).
3 Peirce himself elaborated several aspects of his framework to the mathematical domain (for
example, diagrammatic reasoning). See Otte (2006).
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semiotic account of mathematics? Peirce’s semiotic triad (representamen, object
and interpretant), divorced as it is from social practice, context and human
interaction is not, on its own, illuminative of cognitive activity (see Radford, 2006,
for an elaboration of this idea and an informative critique of Peirce). In contrast
Rotman’s (1993) perspective locates the roots of knowledge in mathematical
discourse which is culturally and historically constituted. This perspective
acknowledges that mathematics involves communication and that it is an activity
or practice. However Rotman’s primary and elaborated concern is with the nature of
mathematics as a semiotic activity, not with a theory of learning.

On the contrary, socio cultural theory (Vygotsky, 1978) is a framework
in which the appropriation of knowledge is understood as the product of
mediated activity within a social and historical context. The role of the mediator is
played by a psychological tool or sign, such as words, graphs, algebra. Vygotsky
saw action mediated by signs as the fundamental mechanism which links the
external social world to the internal human mental processes and he argued that it is
“by mastering semiotically mediated processes and categories in social interaction
that human consciousness is formed in the individual" (Wertsch & Stone, 1985,
p.166). Vygotsky (1981) called that process by which social processes are
transformed into internal processes (through the mechanism of semiotic mediation)
‘internalisation’. Implicit in Vygotsky’s formulation of internalisation is the idea
that social processes are mutated and developed by the individual, not just absorbed
in their original form: “It goes without saying that internalisation transforms the
process itself and changes its structure and functions” (p. 163). In a related fashion,
the interpretant is the transformation by the learner of the representamen into a
personally meaningful sign in the mind. As such Peircian semiotics melds well
with Vygotskian principles: the external sign (the representamen) is mutated into
an internal sign (the interpretant) which itself may become the representamen for

Expanding on these principles, the appropriation of knowledge, such as
knowledge of mathematical objects, is the outcome of the students’ activities with
signs. These activities depend, inter alia, on the tools used to generate the signs
(such as CAS), the pedagogic processes in the mathematics classroom, the
cultural context of the learners (for example, their familiarity with computers),
the text with its implicit pedagogical intentions, the institution (for example, the
institutionalised attitude to, say, problem solving) and the particular history of
the student. Thus mathematical cognition is a semiotically-mediated activity in a
particular historical context which involves the internalization by the learner of
culturally and historically sanctioned objects (abstract mathematical ideas).
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For example, the activities designed by the teacher or selected from a
textbook invoke students to engage in certain mathematical activities, sometimes
using a tool such as CAS. As a result of these sign-orientated activities (which are
framed by the teacher’s pedagogical intentions and situated in a particular social,
cultural and historical context) the student is expected to internalise the signs in the
form of interpretants; these in turn may lead to further activities and hence further
interpretants. Ideally this semiosis continues until the signs become meaningful
to the learner and the use of these signs by the learner are consistent with their use
in the historically and culturally sanctioned mathematics discourse.

 2.4. CAS and Semiotics

CAS is a tool that can transform mathematical signs in accordance with the standard
rules and procedures of mathematics. As such it may be used to mediate in the
construction of mathematical knowledge by the individual. To understand how
this happens, it is necessary to consider how its use may enable or constrain the
generation of a variety of signs and what the existence of CAS based representamen
may mean for the individual’s internalisation of mathematical objects. For
example, a user may be able to use CAS to effect a conversion from a symbolic to
a graphic representamen, a transformation which the user may not have been able
to do using paper and pencil alone. The new CAS generated representamen may
be more epistemologically accessible than other representamen of the object, thus
enabling the production of a more useful interpretant. In particular the student
may notice important properties of the particular object not previously perceived.
Likewise seeing different objects in the same register may help the student
discriminate between properties of these different objects.

The word ‘may’ is used advisedly throughout the previous paragraph: the
use of a CAS does not in itself guarantee that a user gains access to more powerful
representamen. For example, the learner may be unable to interpret the CAS output
or she may not know the correct CAS syntax to generate a representamen. In this
regard, Pierce & Stacey (2004) have argued that the precise notation of a CAS
may be problematic for students and may act as an impediment to the effective
use of the CAS.

The framework of instrumental genesis is well suited to highlighting the
sort of knowledge that a student may need to build an effective relationship with
a CAS. An effective relationship requires, inter alia, knowledge of syntax, and
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in which to draw a graph, the student using Mathematica has to select an appropriate
domain and, sometimes a range (a type of mathematical knowledge not explicitly
required when drawing a graph by hand). The selection of appropriate window
size has been extensively discussed by researchers within the instrumental genesis
framework (see Artigue, 2002; Drijvers and Trouche, 2008).

Another example: To solve an equation where all expressions are algebraic,
e.g. x2 2 = 0, the student can use Solve (exact answer) or NSolve (numeric
approximations). To solve an equation which involves transcendental functions,
the user has to use the FindRoot command. The syntax of this command is quite
complicated: FindRoot [lhs == rhs, {x, x0}] where x0
the root. For example, FindRoot [Cos[x] == x 1, {x, 2}] outputs the value of
x nearest x = 2, for which Cos x = x – 1. Besides this syntactical knowledge,
use of the FindRoot command also involves knowledge of how to estimate a

command in episodes 5 and 9 below.
As the examples above illustrate, doing mathematics with CAS entails a

type of hybrid knowledge (mathematical and/or syntactical and/or technical
knowledge of how to use a computer) different to that required when doing
mathematics with paper and pencil.

Nonetheless the user’s task of generating conversions and treatments may
be enabled by the use of CAS. For example the use of CAS may allow the user
to generate representamen of mathematical objects before she has any substantial
knowledge about the properties of the objects she is representing. This differs from
the pencil and paper environment. Duval (2006, p. 124) argues that a conversion of
representation requires “the cognitive disassociation of the represented object and

introduced and used in teaching”. I suggest that certain forms of conversion in the
CAS medium may involve different cognitive processes. Indeed, at one extreme,
the user may be able to use CAS to convert an object with which she is completely
unfamiliar into a new register. For example, she may use CAS to convert the
logarithmic function represented by y = Log x into a graphical representation
without having any idea about the properties of the log function. Of course, such a
conversion does not guarantee an internalisation of the new object, the logarithmic
function. But it may help. For understanding, the student would certainly need
to perform further conversions, probably under the guidance of a teacher or
textbook for example, isolating certain properties of the logarithmic function,
and describing these properties using language or symbols (a further conversion).
It is these further conversions which may require the cognitive dissociations of the
mathematical object from its semiotic representations.
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 2.5. Analytic Framework

In order to apply a semiotic framework to the mathematical activity with a CAS, a

is required. In particular it is useful to distinguish the symbolic and algebraic
registers from one another. I refer to the CAS register in which mathematical rules
and algorithms are embodied as the symbolic register. Use of this register
requires knowledge of the syntax of the relevant command and possibly some
non algorithmic mathematical knowledge. In contrast, activity in the algebraic
register requires the learner to explicitly manipulate symbols and/or execute
algorithms according to the rules of mathematics. Activity within the numeric
register involves manipulation of numbers (as opposed to symbols).

For example, to solve the equation Cos x = x 1, one may use FindRoot
command in the symbolic register (this requires a knowledge of relevant syntax and

Newton’s approximation method in the algebraic register (this requires algorithmic

the roots of Cos x = x 1.
I also distinguish different media, CAS or pencil and paper, from one another.

Chandler (2002, p. 232) argues that “signs and codes are always anchored in the
material form of a medium each of which has its own constraints and affordances”.

Mathematica, Derive, etc. But each CAS uses its own representamen which are
often different to the representamen used in traditional mathematical notation.)
The symbolic register exists in the CAS medium only; the algebraic register
and the numeric register may exist in paper and pencil or CAS medium.

Duval’s distinction between conversions and treatments, and his argument
that it is the transformation of one sign into another that constitutes mathematical
activity, is very useful for an analysis of semiotic activity. The conversion of
signs between the algebraic register, the symbolic register and the numeric is
often a non trivial exercise, for example the solving of a non algebraic equation
as illustrated above. In the analysis below I show that both conversions and

based work with particular cognitive
implications.

Although I draw heavily on Duval’s notion of treatments and conversions as
an analytic tool, this article is not intended as a direct application or elaboration
of Duval’s theory. Indeed, Duval has developed many other theoretical constructs
which are not directly related to my arguments in this paper.
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Since conversions and treatments using CAS necessarily involve the students’
effective use of the CAS, I sometimes invoke the framework of ‘instrumental
genesis’in order to explain how different levels of instrumentalisation may constrain
or enhance semiotic activity. Instrumental genesis has been used my many
researchers (for example, Artigue, 2002; Drijvers and Trouche, 2008; Lagrange,
2005) to highlight the intricacy of the process whereby the new technological
artefact becomes a functional instrument with which students can do mathematics
(instrumentalisation). It is particularly useful when it is used to illuminate the

example, see Drijvers, 2000, Drijvers and Gravemeijer, 2005). It has also been
used together with Chevellard’s Anthropological approach (for example, Hitt and
Kieran, 2008) to illustrate how the use of techniques (routines and reasoning) in
CAS can stimulate the emergence of conceptual thinking (instrumentation).

My purpose in this article is to focus on the way the learner uses CAS to
generate and/or transform signs and the relationship of these signs to the learner’s
construction of interpretants. To this extent, a semiotic framework is apposite for
my project. Nonetheless, since the quality of the student’s relationship with the
CAS necessarily effects the students’ semiotic activity with the CAS, I sometimes
refer to the framework of instrumental genesis in my interpretation of the students’
activities.

 2.6. Research Question

In what ways does the use of CAS enable or constrain mathematical
activity. In particular, how does the use of CAS promote intra and inter register
transformations? How do these transformations enable or hinder the construction
of appropriate interpretants by the learner?

3. SEMIOTIC ANALYSIS OF STUDENTS ENGAGING IN A CAS-BASED TASK

I use a semiotic analysis to illuminate the type of mathematical activity that the
use of a CAS may engender. In particular, I demonstrate how a pair of learners
engaging in a mathematical task use various signs (utterances, CAS based
signs, text based signs) to generate new signs. These new signs (with their
new interpretants) permit mathematical activity which eventually leads to an
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internalisation of well established mathematical concepts and rules. I frame my
analysis in terms of the way in which the use of the CAS enables or constrains
conversions and treatments, both core aspects of mathematical activity (see Duval,
2006).

3.1. The Task

Major course which I was lecturing and tutoring in 2007, engaged in a particular
task. This task was part of a longer assignment which was given to the students to
work on in pairs, near the end of the academic year. It was adapted from a laboratory
project in the course textbook (Stewart, 2003,  p. 212); its purpose was to introduce
students to the concept of the Maclaurin polynomial before the student had
been introduced to the concept in regular mathematics lectures. The assignment
involved the use of CAS and paper and pencil.

Although I only analyze the students’ semiotic productions in one task

used Mathematica to sketch a graph of the exponential function  f (x) = ex. They
were then required to use CAS to generate graphs of the corresponding 3rd, 4th

and 7th degree Maclaurin polynomials (whose symbolic expressions were given
in the handed out assignment) on the same set of axes as the original exponential
function. The purpose of this task was to give students initial access to the object,
a Maclaurin polynomial, through the conversion (by the CAS) of a symbolic

.
In the second task, students had to generate, symbolically and graphically,

L, of f (x) = Cos x given the identities
L(n) (0) = f (n) (0), n = 0,1. Similarly, in the third task, students had to generate the
quadratic approximation (second order Maclaurin polynomial) p, of f (x) = Cos x
given that p(n) (0) = f (n) (0), n = 0,1,2.

Task four is the following:
Determine the values of x for which the quadratic approximation p(x) found above is
accurate to within 0.1.    [Hint: Graph the functions,  f (x) = cos x, y = p(x), y = cos x + 0.1
and y = cos x 0.1 on a common screen.]

In order to attempt this task, students need to know, inter alia, that p (x) = 1 – 1/2 x2.
The students in this vignette have found this result in the third task.
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3.2. Data Gathering and Data Presentation

Five pair of students were audio taped while doing Tasks Two, Three and Four;
their CAS keystrokes were recorded by software (Bulent) and I (the researcher)

The students were volunteers from the classes that I tutored in the computer

throughout their session which was about an hour long.
In the analytic description below, I present parts of a transcript from one taped

session (compiled using both the audio
pair of students Sipho and Temba.  Both Sipho and Temba are average students;
at the end of the academic year, they each passed the Mathematics I course with
grades of 50% and 53% respectively (the mean mark for the course was 55%).

I have selected excerpts of the original transcript so as to illustrate my arguments.
In the transcripts the students’ utterances and the commands they entered into the
computer are numbered. Where I have omitted utterances or written commands, I
use the semicolon character :. When the transcript is not particularly informative
but is necessary for continuity, I describe the activities that took place rather than

for example, generating a graph, interpreting a graph and so on.

3.3. The Vignette

3.3.1. Episode 1

We start with Sipho reading the task out loud (line 1).

[1] Sipho:  (reading) “Determine the values of x for which the quadratic approximation
    p (x) in Task 3 (a) is accurate to within 0.1”. In other words, we must say

  in which interval will approximation of the quadratic give us values that
  are less than or equal to 0.1… as far as deviation from the actual values
  goes. Does that make sense?

[3] Sipho:  So like/
[4] Temba: Within 0.1….the notion of 0.1.
[5] Sipho:  Ya. Within 0.1. So the value that it gives, it should be within 0.1. It can be

  less than 0.1 or greater than – 0.1.
[6] Temba: And they give us a hint.
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Interpretation: In this episode Sipho attempts to use “other words” (line 1) 
to transform the set of representamen in the text into a new set of representamen, 
still in the language register. He uses the phrase “which interval” to refer to the 
required values of x and the phrase “values that are less than or equal to 0.1... 
as far as deviation from the actual values goes” to refer to the idea given in the 
original text of “accurate to within 0.1” (line 1). In line 5, he further elaborates
the notion of ‘accurate to within 0.1’ by generating a new representamen: “can be 
less than 0.1 or greater than  0.1”.

Analysis: The students are trying to find different ways, using language, to 
denote the same mathematical object to which the text refers. Sipho does this by 
re phrasing given descriptions of specific attributes of the object. This creates new 
representamen, and thus new interpretants. This episode represents a treatment. 
Although the medium of sign production is changed (from written text to oral 
text), the students are still working within the language register.

3.3.2. Episode 2

Temba and Sipho now plot all four graphs on one screen (Figure 1) as suggested 
in the Hint. They use domain ( 4 , 4 ). As a result all four graphs are very close 
together in the output; it is consequently difficult to distinguish one graph from 
another. Despite this the students are able to generate several meaningful signs 

4

Figure 1. CAS Generated Graph of , 0.1, 0.1Cos x Cos x Cos x and 21
2( ) 1 .p x x
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[8] Sipho:  I’m not too sure. Okay, oh ya.
[9] Temba: Oh ya.
[10] Sipho:  I can see what is happening. It’s shifted in two directions.
[11] Temba: Oh. The centre one. The one in the centre. If you can see. That’s probably

  the Cos one, Cos x. And then minus 1 for the bottom one. Minus 0.1, I mean.                
    And plus 0.1.
[12] Sipho:  They are saying: which values of x… its accurate to within 0.1. Wouldn’t

  that be where they intersect? Do you see what I am saying? Like you
  have this one.

[13] Temba:  Um.

Interpretation: Temba and Sipho have used CAS to transform part of the
language based description given in the task (the Hint) into new representamen
in the graphical register. Initial interpretation of this CAS generated

Sipho claims that he “sees what is happening” (the interpretant) which he partially
explains (line 10), using the language register. Sipho’s explanation, “shifted in two
directions”, whilst not clear to the outsider, clearly has some value for Sipho. After
all, he asks: “Wouldn’t that be where they intersect?” (line 12). Meanwhile Temba
generates a new interpretant with a new language based representamen: that is,
he explains (line 11) that the centre graph is Cos x, and that the lower graph is
Cos x 0.1.

Analysis: In this episode, we see how a use of CAS enables a conversion of
the representamen in the language register into the graphical register. Although
the students are unable to use CAS to effect an optimum conversion (the graphs
in a more appropriate window), they use CAS to gain access to an alternate
representation of the mathematical objects (the different functions, the interval of
interest) described in the task Later (lines 10 12) Temba and Sipho move between
the graphic (on CAS) and the language registers (both written and spoken) in
order to make sense (generate an interpretant) of the objects. This represents the
beginning of a conversion; it is a beginning because the language describing
the mathematical notion of “which values of x … its accurate within 0.1” in line
[12] is not yet disassociated from the graphic representation.
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3.3.3. Episode 3

Sipho uses paper and pencil to generate yet another representamen, a rough sketch 
of the four graphs (Figure 2).
[14] Sipho:  You have, you have a Cos graph coming like this. And you have Cos plus 

   figure 2).
    Then you have this quadratic estimates over here.
[15] :
[16] Temba:

  
  

[17] :
[18] Temba: p (x) to that 

  point there and this point here (darkening points of intersection on figure 2).
    .

Interpretation: Sipho spontaneously uses paper and pencil to generate yet 

mathematical object to that of figure 1, but with different domain and scale. After 
further discussion about points of intersection (omitted here), Temba indicates 
that the p (x x – 0.1 graph (line 16). That is, he 

he is able to transform this sign (the interpretant) into a plan of mathematical 

Figure 2. Hand , 0.1, 0.1Cos x Cos x Cos x  and 21
2( ) 1 .p x x
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activity: “we must equate our p (x) to that point there and this point here”.
Although his statement is somewhat incoherent, it functions as a new sign for
him and for Sipho since both of them immediately attempt to solve the equation,
Cos x 0.1 = 1 ½ x2 (see following episode).

Analysis: In this episode, we begin to see how Sipho’s hand drawing of
the functions affords the students new insights, allowing them to generate new
interpretants about the relationships of the different functions (in particular the
relationships between Cos x 0.1 and 1 ½ x2 ). This illustrates how Duval’s
argument (2001) that representations of the same object in different registers make
different aspects of the object visible, may be applied to representations of the same
object in the same register but in different media, in this case the CAS generated
graph and the hand drawn graph. As in Episode 1, I regard this as a treatment.

3.3.4. Episode 4

Interpretative Description: Sipho tries to use paper and pencil mathematics (trial
and error in the numeric register) to solve Cos x 0.1 = 1 ½ x2. However he
soon abandons this attempt because “working it out this way is not nice”.

Analysis: Transforming the graphic signs in episodes 1 and 2 into the
equation Cos x 0.1 = 1 ½  x2 represents a conversion. However Sipho’s attempt
to algebraically solve this equation (a treatment) is unsuccessful; the only way of
hand solving an equation involving a transcendental function and a polynomial
is by using a numeric approximation technique, such as the Newton Raphson
method. Such an equation cannot be solved through algebraic manipulations.

3.3.5. Episode 5

Meantime Temba is using the Mathematica
Mathematica command

to solve this equation. He suggests the use of the FindRoot command (in the
Symbolic register). This is apposite since the FindRoot command must be used
to solve an equation involving a transcendental function and an algebraic function
(see section headed ‘CAS and Semiotics’ for a fuller discussion of this command).
Presumably Temba’s knowledge is consequent upon previous class activities in
which he used this command.
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However, instead of looking at the previous page of the handbook where an
explanation of how to use the command is given, Temba and Sipho only look at
the example. This is: FindRoot [Cos[x] = = x {x,2}]. They are unable to decode
the syntax of this command, and they enter the command FindRoot [h[x] = = p[x]]
into the computer. The syntax is incorrect and they receive an error message see

FindRoot [p[x] = = h[x],x]
x should be a list with a 2 5 elements. More...

Analysis: In this episode we have an example of an unconsummated  
transformation. Here the students’ attempt to use CAS to effect a treatment (the
solution of an algebraic problem) is thwarted by the syntax of the FindRoot
command. This episode illustrates how the students’ practices (the students’
not accessing appropriate resources such as the description together with the
example of the FindRoot command) constrain their mathematical activities.
It evidences the students’ limited instrumentalisation of the CAS.

3.3.6. Episode 6

Temba suggests that they use CAS to generate the graphs of Cos x 0.1 and  
p (x) = 1 ½  x2 only. Sipho agrees and suggests the domain /4 to /4 .

[19] Temba enters Plot command to plot Cos x 0.1 and p (x) on domain /4 to /4
[20] A window with graph of Cos x – 0.1 and p (x) appears (Figure 4). But there are no

visible points of intersection.
[21] Temba:  Oh. I did something wrong. Ne?

Interpretation: Informed by the previously generated interpretants and their
failure to effect a useful conversion of the problem with pencil and paper or CAS,
the students attempt to transform their previous graphical representamen into
a new graphical representamen. Presumably their goal is to make the relevant
information (that is, the points of intersection) more visible. However, the domain is
too narrow ( /4 to /4 ) and the points of intersection lie outside the domain.

Figure 3. Error Message  
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Temba, realizing that the graphs should intersect (presumably based on
previous interpretants) assumes that he “did something wrong” (line 21). But

graphs should look like and he correctly states (line 22) that the graphs intersect at
a point(s) outside the domain.

Analysis: In this episode we see how use of CAS to effect a treatment may
not be straightforward. To draw the graphs in an appropriate domain, the user
of the CAS needs to have mathematical awareness of an appropriate domain
(although one of the virtues of CAS is that the graphs can be drawn easily with
different domains). More importantly, in order to interpret the CAS generated
graphs (a conversion from graphical register to language or symbolic register), the
user needs to have some prior idea of what the graphs should look like (in this
case, the graphs must intersect). That is, in order to use the CAS successfully
as a tool for conversion or treatment of representation, the user may need to have
prior knowledge of the mathematical object she is trying to represent.

3.3.7. Episode 7

Temba now re plots the graph using the domain  to . A much clearer
picture (Figure 5) emerges.

Analysis: Representamen and their interpretants, generated from the previous
CAS graphs, together with prior knowledge about Cos x and p (x), enable the users to

Figure 4. CAS Generated Graph of Cos x  0.1 and 21
2( ) 1p x x ; Domain is ( /4, /4). 
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3.3.8. Episode 8

Interpretative description: Unable to use a symbolic command such as FindRoot,
Temba & Sipho now decide to use trial and error to find value(s) of x where
Cos x 0.1 = 1 ½x2. Guided by the approximate values of the points of intersection
on the CAS graph they substitute numerical values into the CAS based functions
p (x) and Cos x – 0.1. This activity is not fruitful since their visual estimates from
the graph are not accurate. The activity takes place in the numeric register. Figure
6 gives an example of this activity.

Analysis: In this episode, the students try to use the affordances of CAS to

to generate a new representamen of the points of intersection of p (x) and
Cos x 0.1 in the numeric register (a conversion). However working with this
new representamen through trial and error (a treatment) is not very useful since it
is not guided by any systematic approach.

21
2

[1.3] 0.1
0.167499

1 1.3)

0.155

Cos

Figure 6. Numeric Substitutions 

Figure 5. CAS Generated Graph of Cos x  0.1 and 21
2( ) 1 ;p x x  Domain is ( , ).
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3.3.9. Episode 9

The researcher intervenes. She suggests that the students use FindRoot command
(symbolic register). They try to do this but as in episode 5, they use incorrect
syntax.
[23]  Temba types FindRoot[p[x] == h[x], x].
[24]   The computer gives Error message:

FindRoot [p[x] = = h[x],x]
x should be a list with a 2 5 elements. More...

[25]  Researcher suggests that they look up the syntax, and they start looking in
handbook.

[26]  Temba types FindRoot [ 1 – ½ x2 – Cos[x] + 0.1 = 0, x = 0].:
[27]  There is a lot of discussion around Syntax. But they are still unable to extrapolate

how to use FindRoot sign from the example in the handbook.
[28]  Temba now types FindRoot [ 1 – ½ x2 == Cos[x] – 0.1 = 0, x = 0].
[29]  He changes syntax to FindRoot [ 1 – ½ x2 – Cos[x] + 0.1 = 0, {x, 0}].
[30]  Researcher intervenes. She turns to the previous page in the handbook in which

explanation to clarify to the students how to use FindRoot expression.
[31]  Temba now changes syntax to FindRoot [1 – ½ x2 – Cos[x] + 0.1 = 0, {x, 1.2}].
[32]  Researcher shows the students that they have written o, not 0. She also points out

that there is only one = sign (there should be two = signs).
[33]  Temba types FindRoot [1 – ½ x2 = = Cos x – 0.1,{x, 1.2}].
[34]  The computer outputs 1.26124.
[35]  The one hour is now up and, after some general remarks, the students leave the

Interpretation: Temba and Sipho are again severely hindered by poor syntax
(lines 23, 26, 28, 29, 31) and they use poor strategies when trying to correct the
syntax. For example, Temba (line 26) replaces p[x] with 1 – ½ x2 and h[x] with
Cos x – 0.1 and moves them both to the left of the equal sign. Also they do not
attempt to interpret the Error message (admittedly it is rather opaque – line 24).

has passed since the beginning of the session. This is evidenced by their
careless use of the alphabetic o rather than numeric 0 (lines 26, 28, 29, 31) and
Temba’s uncharacteristic poor use of = sign (line 28).
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Clearly the example of FindRoot in the text has little semantic value for these
x (Line 29).

roots).
Finally with the assistance of the researcher (lines 25, 30 and 32) they are

able to use the FindRoot command correctly; the computer outputs the answer
1.26124 (Figure 7). The students accept this value as the x value of one point of
intersection.

Analysis: In this episode, as in episode 5, the students attempt to generate a
symbolic representation of the relevant (to their task) information contained in the

by their lack of knowledge of syntax and their praxis (not ‘knowing’ how to access
information in the manual) although with guidance from the researcher they

the use of CAS to effect a conversion may be hindered by an inability to use syntax
correctly. This is yet more evidence of these students limited instrumentalisation
of the CAS.

3.3.10. Episode 10

Later, outside the research session, they use FindRoot command correctly and
they successfully complete the task.

4. DISCUSSION

In the above vignette, students’ generation of new signs via treatments
(transformations within a register) and conversions (transformations between
different registers) in both the CAS and pencil and paper media constitute their
mathematical activities. That is, mathematical activities are essentially semiotic
activities.

FindRoot 21
2[1 0.1,{ ,1.2}]x Cos x x

 {x 1.26124} 

Figure 7. Successful Use of FindRoot Command 
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Of particular interest is the way in which the use of CAS promotes intra
and inter register transformations. With regard to conversions, we see how the
use of a CAS may afford access to alternate representamen of the objects. For
example, in episode 2 the students use CAS to generate a graphic representamen
of the four functions referred to in the task. The students are then faced
with an epistemological problem: they need to isolate the attributes of the
representamen which relate to the given task 4. In the vignette they do this through
generating further representamen, for example, the hand drawn graph (Episode
3); the CAS generated graph (Episode 7); the equations in the CAS numeric

representamen enable students to isolate different attributes of the objects (the
four graphs and their relationship to the task) and in this way to enhance their
interpretants of the different objects. Semiotically speaking, the students use CAS
to enable a process of semiosis (transforming one interpretant into another) and
therein lies the value of CAS.

Furthermore, the use of CAS enables access to representamen which would
have been unavailable to the student without a CAS and this broadens the type
of mathematical activities available to the student. For example, in episode 9, the

x 0.1
and 1 ½ x2.  Although the students battle to effect this conversion (I return to this

complete the task (Episode 10).
In a CAS environment, the user may generate new signs (the answer to an

algorithmic procedure, the plot of a graph, and so on) with CAS rather than with
pencil and paper. I suggest that this outsourcing of computation to the computer
has a profound effect on the skills needed to interpret the CAS output (that is, to
effect a conversion of signs in the graphic or symbolic registers to the language
register). In the semiotic analysis above, we see how the students struggle to effect
a conversion of signs in the graphic or symbolic registers to the language register.
For example, in episode 2, the students take an inappropriate time to interpret the
CAS generated graphs. However, and as discussed above, their interpretation is
ultimately mediated by the generation of further representamen. In this instance,
the use of CAS may have promoted interpretation (in terms of providing the
user with different representations with which to generate complementary
interpretants). Notwithstanding this argument, I suggest that there are instances
(not evidenced in my vignette) where signs generated by CAS, and with

4

approximates the cos graph to 0.1 units.
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which the student is unfamiliar, may be so opaque as to be indecipherable by the
student. This requires further research.

Conversions in the CAS based environment may also be hindered by the

frustrated attempts to compose the FindRoot command (Episodes 5 and 9).  Problems

a limited level of instrumentalisation of the CAS.  In these episodes,, the students’

about this command. That is, the students could have turned to the previous
page
command. Or they could have used the Help function in Mathematica (both issues
of praxis). Related to this, the pedagogical environment should have focused more
on strategies to help students instrumentalise the CAS. (This suggests the need for
research into appropriate pedagogic strategies for effective instrumentalisation).

Treatments mainly take two forms: transforming graphs into new graphs
(through the use of a more apposite domain) and executing algorithms (using the
FindRoot command in this vignette). The execution of a particular algorithm is
usually extremely easy, provided the task has been correctly transformed into a
suitable register (a conversion). But the user is not required to understand the
algorithm which the computer uses to solve the equation. See end of episode 9

as discussed above, a challenge may lie in the interpretation of the output (a
conversion).

of a function into another graphic representation of that function, usually through
change of domain, may be cognitively complex. For example, the user may need
to already have an idea of what the graph should look like. In episode 6 we see how
Sipho recognised the inadequacy of the CAS graphic representamen, presumably
because of prior knowledge and/or because of exposure to previous representamen
of the graphs (see episodes 2 and 3). As a result the students were able to effect
an appropriate treatment of the graphic sign.

Notwithstanding the non
semiotic analysis illustrates how the use of CAS ultimately affords the students an

the graphical signs (Figures 1, 2 and 5) to gain crucial insight into which functions
need to be equated. They also use CAS to numerically investigate the values
at which the quadratic approximation p(x) is within a distance of 0.1 from the
Cos graph (Figure 6). Although this numerical approximation is not necessary
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for solving the problem, it presumably enriches and enhances the students’
understanding of the mathematical task and object. However, the students inability
to use the appropriate syntax for the FindRoot command severely hinders their
mathematical activity in the latter part of the task (Episodes 5 and 9). This strongly
suggests that the level of instrumentalisation of the CAS is profoundly related to
the semiotic activity of the students.

5. CONCLUSION

The vignette illustrates how the intra and inter transformations with CAS may
promote semiotic (that is, mathematical) activity. With reference to Vygotsky, the
signs which the students generate with CAS or paper and pencil or through
utterances, mediate the internalisation process. That is, the students internalise
different representamen into various interpretants thereby internalising the
outside world. These interpretants are further transformed and mutated
by the learner into new representamen with new interpretants and so on.

to construct different interpretants for that object. This is revealed by the new
signs that they generate in their mathematical activities. In turn, these new signs
reveal important properties of the mathematical object under consideration. For
example, in the vignette above, different representamen enable the student to
construct various interpretants of the relationship of the (quadratic) Maclaurin
polynomial, p (x), to Cos x (such as the extent of its approximation in a particular
interval, the fact that p (x) is less or equal to Cos x for all x 0 , and so on).
Also, seeing different objects such as the quadratic approximation and Cos x in
the same register enables the student to discriminate between properties of these
different objects (for example, the quadratic approximation is accurate to within
0.1 of the Cos graph for x

We also see that the use of CAS for conversions and treatments is not
straightforward. In particular, we see that the construction of the CAS based signs
and interpretation of CAS output may be particularly problematic. With regard

limit the usefulness of CAS. In this regard, teachers need to be aware of
the importance of an adequate instrumentalisation of the CAS. We saw in the
above vignette, how students’ semiotic activity was severely limited by their lack
of knowledge of how to use the FindRoot command. Interpretation of CAS output
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(a conversion) may also pose its own unique challenges. Unlike in the paper and
pencil environment where the user is always actively involved in constructing the
output (e.g. hand drawing a graph), the CAS user is usually not directly involved
in generating the output other than entering an instruction into the computer. Thus
interpretation may be a paradoxical endeavour: the user needs to know which
properties of the object (say, features of a graph, or roots of an equation) to focus
on in order to use these attributes to cognitively construct the object for herself;
this may be where pedagogic guidance (via specially designed tasks or discussion)
is required. Treatments in the CAS based environment may also be problematic.

representation of a function into another graphic representation of that function,
usually through change of domain, may require prior knowledge of important
properties of the function.

A semiotic analysis of different students doing different tasks in a different
pedagogical and cultural space would no doubt reveal other possibilities of
students’ engagement with CAS. Certainly further research focussing on the
relationship between the process of instrumental genesis and the evolution of
the learner’s semiotic activity in a CAS based context would be very fruitful for
further understanding technology’s role in the learning of mathematics.
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