
RESUMEN

Una distinción entre pruebas que prueban y pruebas que explican es parte invariable de
las discusiones recientes en epistemología y en educación matemática. Esta distinción
se remonta a la época de los matemáticos que, como Bolzano o Dedekind, intentaron
restablecer a las matemáticas puras como una ciencia puramente conceptual y analítica.
Estas tentativas reclamaron, en particular, una eliminación completa de los aspectos
intuitivos o perceptivos de la actividad matemática, sosteniendo que se debe distinguir
de forma rigurosa entre el concepto y sus representaciones. Utilizando una aproximación
semiótica que refuta una separación entre idea y símbolo, sostenemos que las
matemáticas no tienen explicaciones en un sentido fundamental. Explicar es algo así
como exhibir el sentido de alguna cosa. Los matemáticos no tienen, sin embargo, como
vamos aquí a intentar demostrarlo, sentido preciso, ni en el sentido intra-teórico
estructural, ni en comparación con la objetividad intuitiva. Los signos y el sentido son
procesos, como vamos a sostenerlo inspirándonos de Peirce.
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      We saw that the exchange of commodities implies contradictory and mutually exclusive conditions. The differentiation

of commodities into commodities and money does not sweep away these inconsistencies, but develops a modus vivendi,

a form in which they can exist side by side. This is generally the way in which real contradictions are reconciled. For

instance, it is a contradiction to depict one body as constantly falling towards another, and as, at the same time, constantly

flying away from it. The ellipse  is a form of motion which, while allowing this contradiction to go on, at the same time

reconciles it. Karl Marx (1906), Capital, vol I. chapter 3.

Proof and Explanation from a

Semiotical Point of View

Michael Otte 1

Man sah, dass der Austauschprozess der Waren widersprechende und einander
ausschliessende Beziehungen beinhaltet. Die Entwicklung der Ware hebt diese
Widersprüche nicht auf, schafft aber die Form, worin sie sich bewegen können. Dies ist
überhaupt die Methode, wodurch sich wirkliche Widersprüche lösen. Es ist z.B. ein
Widerspruch, dass ein Körper beständig in einen anderen fällt und ebenso beständig von
ihm wegflieht. Die Ellipse ist eine der Bewegungsformen, worin dieser Widerspruch sich
ebensosehr verwirklicht als löst. K. Marx, Das Kapital, Band I, p.118f 2

ABSTRACT

A distinction between proofs that prove and proofs that explain has over and again played
an important role within recent discussions in epistemology and mathematics education.
The distinction goes back to scholars who, like Bolzano or Dedekind, have tried to
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reestablish pure mathematics as a purely conceptual and analytical science. These
endeavors did in particular argue in favor of a complete elimination of intuitive or perceptual
aspects from mathematical activity, arguing that one has to rigorously distinguish between
a concept and its representations. Using a semiotical approach which negates such a
separation between idea and symbol, we shall argue that mathematics has no explanations
in a foundational sense. To explain amounts to exhibiting the meaning of something.
Mathematics has, however, as we shall try to show, no definite meanings, neither in the
structural intra-theoretical sense nor with respect to intuitive objectivity. Signs and
meanings are processes, as we shall argue along with Peirce.

KEY WORDS:  Peirce, Bolzano, Semiosis, Proof, Explanation.

RESUMO

Uma distinção entre provas que demonstram e provas que explicam é parte invariável
das discussões recentes na epistemologia e em educação matemática. Esta distinção
se remonta à época dos matemáticos que, como Bolzano o Dedekind, tentaram divisão
da matemática pura como uma ciência puramente conceptual e analítica. Estas tentativas
reclamaram, em particular, uma eliminação completa de os aspectos intuitivos ou
perceptivos da atividade matemática, sustentando que se deve distinguir de forma
rigorosa entre o conceito e suas representações. Utilizando uma aproximação semiótica
que refuta uma separação entre idéia e símbolo, sustentamos que a matemática não
tem explicações em um sentido fundamental. Explicar é algo assim como exibir o sentido
de alguma coisa. Os matemáticos não têm, contudo, como vamos aqui a intentar
demonstrar, sentido preciso, nem o sentido intra-teórico estrutural, nem comparação
com a objetividade intuitiva. Os signos e o sentido são processos, como vamos a sustentar
inspirados em Peirce.

PALAVRAS CHAVES: Peirce, Bolzano, Semiótica, Prova, Explicação.

RÉSUMÉ

Une distinction entre preuves qui prouvent et preuves qui expliquent est une partie
invariable des discussions récentes en épistémologie et en éducation mathématique.
Cette distinction remonte à l’époque des mathématiciens qui, comme Bolzano ou
Dedekind, ont tenté de rétablir les mathématiques pures comme une science purement
conceptuelle et analytique. Ces tentatives ont réclamé en particulier une élimination
complète des aspects intuitifs ou perceptuels de l’activité mathématique en soutenant
qu’on doit distinguer de façon rigoureuse entre le concept et ses représentations. En
utilisant une approche sémiotique qui réfute une telle séparation entre idée et symbole,
nous allons soutenir que les mathématiques n’ont pas d’explications dans un sens
fondamental. Expliquer revient à exhiber le sens de quelque chose. Les mathématiques
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Introduction

Before we can address the issue of proof
and explanation we have to get rid of
traditional Bewusstseinsphilosophie
(philosophy of consciousness), that is,
popularly speaking, the belief that
“meanings are in the head” and knowledge
is some sort of mental experience. After
Kant epistemology began to ramify and
various new philosophies of mathematics
arose in which meaning, rather than mind
played the central role. But the view that
there exists an epistemologically autarkic
or self-sufficient epistemic subject, which
serves itself from external sensations and
internal experiences or representations
(Vorstellungen) to thereby constitute true
knowledge, is a myth and should also be
abandoned.

In Part I of this paper we try to provide
some pertinent arguments to this end,
based on Peirce’s semiotics.
“Consciousness is used to denote the I
think, the unity of thought; but the unity of
thought is nothing but the unity of
symbolization” (Peirce CP 7.585). Part II
treats the questions of proof and
explanation with respect to the ideas of
Bolzano on the one hand and Peirce on
the other. Part III presents some examples
and tries to make a connection with current
debates about the issue in mathematical
education and cognitive psychology.

I.To try to understand cognition and
knowledge as semiotic processes we
begin by conceiving of cognition as the
result of a dialectical contradiction

between cognitive subject and objective
reality. We feel or perceive something, but
cannot turn it into cognition without a
symbol and it thus remains as a mere non-
categorized sensation or intuition. Or,
differently: somebody might understand
the logic of an argument without seeing
how it applies in a particular situation and
thus does not really follow it. It is futile and
fruitless, for example, to expect that the
object of investigation would finally reveal
itself to us in plain clearness such that
knowing would then amount to reading off
its relevant properties.

The symbol is to mediate between
conscious feeling and objective reaction
and should provide this interaction with a
certain form or representation. This is the
only manner in which we can know, that is,
by constructing a relevant representation of
some kind.  “A representation is that
character of a thing by virtue of which, for
the production of a certain mental effect, it
may stand in place of another thing. The
thing having this character I term a
representamen, the mental effect, or
thought, its interpretant, the thing for which
it stands, its object.” (Peirce, CP 1.564).
In contrast to the traditional dyadic models,
Peirce defines a sign as a triad. And this
implies that a sign does not stand for its
object in all respects, “but in reference to
a sort of idea, which I have sometimes
called the ground of the representamen.
‘Idea’ is here to be understood in a sort of
Platonic sense, very familiar in everyday
talk” (Peirce, CP 2.228 and 4.536)).
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n’ont pas cependant, comme nous allons tenter de le montrer, de sens précis, ni dans le
sens intra-théorique structurel, ni par rapport à l’objectivité intuitive. Signes et sens sont
des processus, comme nous allons soutenir en nous inspirant de Peirce.

MOTS CLÉS:  Peirce, Bolzano, Sémiosis, Preuve, Explication.
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This implies that the sign is consciously
recognized by the cognitive subject and
for that purpose the subject has to create
another sign, which becomes an
interpretation of the first interpretant. As
Roman Jakobson, characterizing Peirce‘s
thinking, once said:

“One of the most felicitous, brilliant ideas
which general linguistics and semiotics
gained from the American thinker is his
definition of meanings as the translation
of one sign into another system of signs
(4.127)” (Jakobson 1985, 251).

The flow of meaning thus expresses the
contradiction and it evolves by a recursive
interaction between the objects (referents)
and interpretants (senses) of signs.
Objects and interpretants of signs are in
general signs themselves. We argued
elsewhere (Otte, 2003) in great detail that
(mathematical) meaning has two
components, one of which refers to
objects, and which is called the extensional
component of meaning; the other relating
to the interpretant of the sign and which it
is suitable to call the intensional or
coherence component.  The most
important consequence, to be applied in
the following paragraphs, consists in the fact
that there never is a definite meaning; neither
in the structural or intensional sense nor with
respect to the extensions of theoretical
terms. A pragmatic perspective on things
thus seems to always recommend itself.

All reasoning is an interpretation of signs
of some kind. And the interpretation of a
sign is nothing but the construction of a
new sign. As was said above, a mere
feeling or consciousness, without a
representation, is no interpretation and an
interpretation or reformulation of a text,
which does not carry on the ideas and does
not generalize, is futile also. All cognition
proceeds by means of the construction of

an adequate representation and this
construction provides nothing but the
contradiction between subject and object
with a form. “It is a contradiction that a body
will permanently fall into another and at
the same time will flee away from it. The
ellipse is a form of development by which
this contradiction is as much realized as it
is resolved” (K. Marx, see above).

A symbol mediates between subjective
spontaneity and objective reaction and is
termed a Third, by Peirce.

The object of knowledge, being nothing but
a representation—something which Kant
had dubiously called an intuition—
therefore is also not something given “out”
there, it is not a Kantian “thing in itself,”
but is established by the relation between
subject and reality. It makes itself felt
equally by the objectivity of this interaction
process as well as through its breaking
downs.

Mathematical ontology, for example, is
constituted by a practice of mathematical
reasoning and application, not the other
way around. A mathematical object, such
as number or function, does not exist
independently of the totality of its possible
representations, but must not be confused
with any particular representation, either.
We have on a different occasion
expressed these facts in terms of a
principle of complementarity (Otte, 2003).
To see how a semiotic perspective might
help to better grasp that complementarity
one should remind oneself of the following
characteristics of mathematics;

- Mathematics, on the one hand, has no
more concrete objects of its own than
painting; it is therefore not possible to do
mathematics by simply considering certain
kinds of objects, either constructed or
given, abstracting what seems essential
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about them. According to the Cantorian
claim that consistency is sufficient for
mathematical existence, there is so much
truth that it is consistency which makes a
sign potentially meaningful.
Consciousness “is sometimes used to
signify the (Kantian) I think, or unity in
thought; but unity is nothing but consistency,
or the recognition of it. Consistency
belongs to every sign, so far as it is a sign;
therefore every sign, since it signifies
primarily that it is a sign, signifies its own
consistency” (Peirce, CP 5.313-15).

- On the other hand, mathematics is not a
mere logical language, nor is it an
analytical science from concepts, that is,
definitions. Mathematics includes indexical
representations and observational
activities. “The best thinking, especially on
mathematical subjects, is done by
experimenting in the imagination upon a
diagram or other scheme,” says Peirce
(Peirce, NEM I, 122).

Thus the idea of a sign might help us to
better understand that these different
characterizations of mathematics are not
as distinct as it might have appeared at
first sight, but rather they represent
complementary aspects of mathematical
thinking, because signs are always used
referentially as well as attributively. This
is but another expression of the interaction
between object and interpretant of the
sign, as indicated above.

The semiotic approach to cognition and
epistemology distinguishes itself from the
philosophy of consciousness (as
developed by Kant, for example) by its
radical break with the assumptions and
prerequisites of reasoning characterizing
the latter. “All our thinking,” says Peirce,
“is performed upon signs … External signs
answer any purpose, and there is no need
at all of considering what passes in one’s

mind” (Peirce, NEM I, 122). Thinking
occurs in signs and representations, rather
than by means of imaginations or
intuitions, which are to be looked for within
our heads. This does not mean that
conscious recognition and intuitive activity
are dispensable. It only means that they
have to be taken as means and
instruments of cognitive activity, rather than
as its foundations (Otte, 2005, 16f).

Insisting, when for example trying to
interpret a text, on the question “what did
the author really mean” has no more merits
to it than the idea that the reader, and not
the author, is the sole source of meaning.
“Not even the author can reproduce his
original meaning because nothing can
bring back his original meaning
experience” (Hirsch, 1967, 16; and in
contrast: Fish 1980, 359f). And
correspondingly, not any arbitrary
reformulation of a text is an admissible
interpretation. Neither the author nor the
reader is the unique source of meaning
because meaning is but the sign process
itself.  The reality of a text is its
development, the meaning of a proposition
lies in its consequences and the essence
of a thing is the essence or meaning of a
representation of that thing, and so forth.
The semiotic approach fosters a genetic
perspective on knowledge. Knowledge is
essentially a process, a learning process
or a process of growth and generalization,
expressed in terms of a permanent
transformation of one representation into
another one.

Imagining cognition as a contradiction
between subject and object implies the
conviction that neither subject nor object
can dominate or even determine the other
part of this relationship. We do not find final
and definite descriptions of things and
mostly we do not even know what we
know. We apply it, we represent it, but we
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cannot say or express it, nor describe what
we are doing. “What can be shown cannot
be said,” Wittgenstein famously affirmed.
The spirit of creative activity thus is more
or less the following.

Everything that we have formulated or
constructed is just done and is there in the
plain light of day. It means nothing per se,
it is just there. Everything we achieve, we
simply achieve. It neither needs nor
deserves an interpretation or commentary,
because it is, as we perceive it, real. The
commentary would add nothing to the
thing created and given. The given is just
the given. What we have made, we have
made. It has no general symbolic
significance nor can it be undone. An
action is an action, a work of art is just a
work of art, a theory is just a theory. It must
be grasped as a form sui generis, and
recreated in its own terms, before we can
inquire into its possible meanings or
applications. Any creative achievement
remains imperfect as long as questions
about its meaning dominate when
considering it. In artistic drawing what we
achieve is a line, and the line does all the
work, and if it fails to do so no philosophical
commentary will rescue or repair a bad
work of art. In literature or philosophy, it is
the word or the sentence, in mathematics
the new concept or the diagram, which
carry the entire weight, etc. etc. Mastery,
Paul Valery, says, presupposes that “one
has the habit of thinking and combining
directly from the means, of imagining a
work only within the limits of the means at
hand, and never approaching a work from
a topic or an imagined effect that is not
linked to the means” (Valery, 40).

Everything just is and thus means itself:
P=P! This principle of identity lies at the
heart of art and likewise at that of logic or
exact science and it is obviously directed
against any idea of cognition as a mental

feeling or inner experience. P just means
P! No commentary and no psychological
experience or philosophical consideration
shall be able to add anything to the matter.

A monotonous and perfect repetition
would, however, destroy any creativity as
well. Any line in an artistic drawing is, in
fact, a continuum of lines; it fulfills its
destination to represent something, at the
very same time indicating an indeterminate
set of possible modifications and further
developments.

The creative process thus operates on the
interplay of variation and repetition. A theory
or a work of art, being an interpretation, is
also a process, namely the process of
creating an interpretant of the representation
given and so on. At this very moment we
are developing the anti-thesis, that is,
pointing to the fact that a work of art or a
theory are not mere existents, but are signs,
which have a meaning. And an interpretation
of that meaning is nothing but another
representation. The sign is thus a thing as
well as a process, namely the process of
establishing a relationship between object
and interpretant. It is a flow of
meaningfulness. Peirce, in fact, defines
semiosis as the action or process of a sign.
“By ‘semiosis’ I mean”, Peirce writes, “an
action, or influence, which is, or involves, a
cooperation of three subjects, such as a sign,
its object, and its interpretant, this tri-relative
influence not being in any way resolvable
into actions between pairs” (Peirce, CP
5.484).

Evolutionary realism therefore means the co-
evolution of reality and knowledge, that is,
the evolution of symbolism. It is the symbol
in movement.

II.Let us now try and spell out the problem
to which we should like to apply our
semiotic view of mathematical activity. This
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is in fact the problem of mathematical
explanation.

There has been, for some time now, a
widespread debate about mathematical
explanation and rigorous proof in
mathematics education as well as in the
philosophy of mathematics (for an
overview see Mancosu, 2000 and 2001;
Hanna, 2000). In this discussion, a
distinction between proofs that prove
against proofs that explain has over and
again played an important part. Gila
Hanna, for example, presents the distinction
in psychological terms, but later on describes
explaining in this way: “I prefer to use the
term explain only when the proof reveals and
makes use of the mathematical ideas which
motivate it.  Following Steiner (1978), I will
say that a proof explains when it shows what
‘characteristic property’ entails the theorem
it purports to prove” (Hanna 1989, 47).

Hanna and Steiner, speaking about the
“characteristic property” that entails the
“theorem it purports to prove,” seem to
follow Bolzano respectively as well as
Aristotle in their ideas about mathematics.
The “characteristic property” seems
something like an essential cause in the
Aristotelian sense. Steiner’s view “exploits
the idea that to explain the behavior of an
entity, one deduces the behavior from the
essence or nature of the entity” (Steiner
1978, 143). Steiner, believing that all
mathematical truths are necessary and are
thus valid in “all possible worlds,” prefers
to use the term “characterizing properties,”
rather than the term “essence.” But he
makes very clear his belief that
mathematical proofs are exclusive like
calculations or numerical determinations,
picking out “one from a family” (147),
rather than being general proof schemes
or general forms of argumentation and
demonstration. This view appears to be
derived from an Aristotelian model of

science and mathematics and it stands in
extreme contrast to modern axiomatical
mathematics in the sense of Hilbert or
Emmy Noether, for example.

The proofs of modern mathematics are not
glued to the particularities of individual
propositions and it is generality of
perspective and fertility of method that
render them explanatory, because it is this
which opens up new possibilities for
mathematics. A proof is first of all a sign
or representation and, as such, is a
general already. It is the objectivity of
general relationships what matters. Even
if one were concerned with the subjective
or educational aspects of the matter and
therefore interested in the intuitive insights
of a proof, this would primarily imply, as
we have indicated in Part I, the search for
new applications or representations of the
basic ideas.

The distinction Steiner and others have
drawn between proofs that explain and
proofs that merely prove or verify makes
sense only with respect to an Aristotelian
model of science, as it is exemplified, for
instance, by Euclid’s Elements of
geometry. This Aristotelian model has
been described by E. Beth (1968) and
more recently by de Jong (2003). An
Aristotelian science, according to these
descriptions, is comprised of a system of
fundamental concepts such that any other
concept is composed and is definable in
terms of these fundamental concepts;  it
also contains a system of fundamental
propositions such that all other
propositions are grounded in and are
provable from these fundamental
propositions. And the fundamental
concepts or propositions stand in close
continuity with everyday thinking.
Explanation in such a context means
reduction to the concrete foundations of
general experience, rather than constructing
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new theoretical contexts and searching for
new applications.

Bolzano, in fact, referring to Aristotle, seems
to have been the first modern author
pleading for demonstrations «that show the
objective connection and serve not just
subjective conviction.» His monumental
“Wissenschaftslehre” (doctrine of science;
1836/1929) was conceived of as a general
science or logic in the service of
enlightenment and was organized like a
didactical treatise. This work contains a
distinction between proofs that merely prove,
being intended to create conviction or
certainty, and others, which “derive the truth
to be demonstrated from its objective
grounds. Proofs of this kind could be called
justifications (Begruendungen) in difference
to the others which merely aim at conviction
(Gewissheit)” (Bolzano, Wissenschaftslehre,
vol. IV, p.525, 261). In an annotation to this
paragraph Bolzano mentions that the origin
of the distinction goes back to Aristotle and
the Scholastics, who have, however,
attributed an exaggerated importance to it
by affirming that only justifications produce
genuine knowledge, but that it had fallen into
neglect in more recent times.

On grounds of this distinction between proofs
that are merely certain and others which are
genuine justifications, Bolzano criticized
Gauss’ proof of the fundamental theorem of
algebra of 1799, for example, because
Gauss had on that occasion employed
geometrical considerations to prove an
algebraic theorem. Bolzano did not, as is
often claimed (Volkert 1986), doubt the
validity of Gauss‘ arguments and he did not
question the certainty of our geometrical
knowledge, but criticized the “impurity” of
Gauss proof.

It is this spirit that led to the so-called rigour
movement and to the program of
arithmetization of mathematics and

Bolzano has in fact been one of the
spiritual fathers of this program.
Mathematics was to be established as an
analytical science from definitions, and
numbers were considered to be the most
important means of mathematical
analysis.

One important effect of this program was
the separation between pure and applied
mathematics and the reconstruction of
pure mathematics on completely logical,
or rather, conceptual terms. Continuous
mathematics, like geometry, for example,
was considered applied mathematics. All
intuitions and objects were to be replaced
by definitions and mathematical proof,
becoming the central concern of
mathematicians, should be performed as
a kind of linguistic activity. Although the
conceptions of logic involved varied
considerably, mathematical explanations
in the end amounted to nothing but
rigorous deduction from first principles and
basic concepts.

One of Bolzano’s most important
mathematical achievements was the proof
of the existence of the least upper bound
of a bounded set of real numbers and,
based on this, a completely analytical
proof of the intermediate value theorem
for continuous real functions. Both results
were published in 1817 in Bolzano‘s “Rein
analytischer Beweis des Lehrsatzes, dass
zwischen zwei Werten, die ein
entgegengesetztes Resultat gewähren,
wenigstens eine reelle Wurzel der
Gleichung liege.” Bolzano‘s proof of the
intermediate value theorem survives
nearly unchanged in today’s calculus
textbooks, although one aspect has
changed fundamentally since Dedekind.
Bolzano had based his proof on the
Archimedean axiom, which says that given
any two real numbers A and B, there will
always be a natural number n such that
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nA supersedes B. He had, however, taken
this axiom to be an obvious truth, rather
than a postulate. It was Dedekind only, who
realized that nothing of such a kind could
be proved or assumed as obvious. As
Dedekind states it with respect to his own
definition of continuity:

“The assumption of this property is nothing
else than an axiom by which we attribute
continuity to the line, by which we think
continuity into the line. If space has real
existence at all it is not necessary for it to
be continuous” (Dedekind 1912, p.3, my
translation).

The filling-up of gaps in the rational
numbers through the creation of new point-
individuals is the key idea underlying
Dedekind’s construction of the domain of
real numbers. Bolzano, in contrast, thought
it obvious that these points, as exemplified
by the incommensurability of certain line
segments, for example, existed objectively.
Charles Sanders Peirce’s view of the
continuum is, in a sense, intermediate
between that of Dedekind and Bolzano. He
held that the cohesiveness of the
continuum rules out the possibility of it
being a mere collection of discrete
individuals, or points, in the usual sense.
“A continuum is precisely that every part
of which has parts, in the same sense”
(Peirce, W2, 256). The continuum
represents the reality of the possible
determination of points, rather than be an
actual set of points; but this possibility is
objective, such that, differently from
Dedekind, space could not be discrete,
according to Peirce.

If one looks at the various proofs of the
intermediate value theorem one might be
inclined to ask: why not take this theorem
itself as the essential continuity postulate?
It seems as clear and obvious as any of
the other candidates, the existence of the

limit of a bounded monotonous sequence,
the Heine-Borel theorem, the existence of
a point of intersection of a nested
sequence of closed intervals of rational
numbers with lengths tending to zero, etc.
etc.

Mainly pragmatic reasons are responsible
for the choice of axioms, reasons that are
related to the development of
mathematical knowledge and the
construction of theories. But what about
the problem of explanation then? To
explain amounts to exhibiting the meaning
of something. Mathematics has, however,
no definite meanings, neither in the
structural intra-theoretical sense nor with
respect to intuitive objectivity. Signs and
meanings are processes, as we have
argued in paragraph I.

Resnik and Kushner do not consider the
proof of the intermediate value theorem
as explanatory in the sense of Steiner’s
characterization. They write:

“We find it hard to see how someone could
understand this proof and yet ask why the
theorem is true (or what makes it true).
The proof not only demonstrates how each
element of the theorem is necessary to the
validity of the proof but also what role each
feature of the function and the interval play
in making the theorem true. Moreover, it
is easy to see that the theorem fails to hold
if we drop any of its conditions” (Resnik/
Kushner 1987, 149).

Rigorous proofs in this sense do not admit
“why”-questions any more than mere
calculations do and it is hard to see how
they could be explanatory at all.
Considering the question of how to choose
the relevant mathematical model might
perhaps change the situation. But the
reader should remind herself that the term
“explanation” had, for Bolzano, an
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objective meaning, rather than a
psychological one. And this objectivism led
to his error with respect to the foundations
of the real numbers and his ignorance of
the fact that mathematics contains only
hypthetico-conditional statements, rather
than categorical ones. This, however,
means that the foundations of
mathematical claims lie, so to speak, “in
the future”, in the use and application of
the mathematical propositions. A
mathematical proof must therefore
generalize in order to be explanatory. As
we have seen, however, with respect to
Bolzano and Steiner or Hanna, there is a
strong foundational tendency involved in
their ideas of explanatory proofs. It is very
essential to Bolzano, for example, that
there exist a hierarchy of truths in
themselves independent from our
knowledge or representation.

Cauchy had, at about the same time as
Bolzano, given a geometric argument for
the intermediate value theorem, being
more concerned with certainty and
conviction than with objective foundation
(Cauchy 1821, 43f). Bolzano did consider
proofs, like those by Gauss or Cauchy, as
sufficiently obvious and convincing, but
objected that they did not show the real
fundamentals and thus were not true
jus t i f i ca t ions ,  bu t  ra ther  mere
subjective confirmations (subjektive
Gewissmachungen) .  I t  i s  c lear,
Bolzano writes, “that it is an intolerable
offense against correct method to derive
truths of pure (or general) mathematics
(i.e. arithmetic, algebra analysis) from
considerations that belong to a merely
applied or special part, namely geometry.
… For in fact, if one considers that the
proofs of the science should not merely
be convincing arguments, but rather
justifications, i.e. presentations of the
objective reason for the truth concerned,
then it is self-evident that the strictly

scientific proof, or the objective reason of
a truth which holds equally for all
quantities, whether in space or not, cannot
possibly lie in a truth which holds merely
for quantities which are in space. On this
view it may on the contrary be seen that
such a geometrical proof is really circular.
For while the geometrical truth to which
we refer here is extremely evident, and
therefore needs no proof in the sense of
confirmation, it nonetheless needs
justification” (Bolzano after the translation
by Russ 1980, 160).

The term “justification” refers to the
Leibnizian idea that every concept can be
decomposed into “atoms.” Unprovable or
basic propositions must, according to
Bolzano, be among those whose subjects
and predicates are completely simple
concepts in the sense of Leibniz. Bolzano
believed, for example, that different cases
of one and the same issue should be
formulated in terms of different
propositions, like in Euclidean geometry.
The law of cosine, for instance, in the
cases of the acute- respectively obtuse-
angled triangles signifies two different
cases requiring different arguments.
“Euclid was right in formulating two
different propositions here,” writes
Bolzano (Bolzano 1810/1926, 61).

Bolzano not only emphasized the
necessity of “homogeneity” between
method and object but he also conceived
of concepts in themselves, propositions in
themselves and representations
(Vorstellungen) in themselves,
independent of our thinking about them.
This is sometimes emphasized by saying
that Bolzano was the first to realize that
“the proper prolegomena to any future
metaphysics was the study of what we say
and its laws and that consequently the
prima philosophia was not metaphysics or
ontology but semantics” (Bar-Hillel, 1967,
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337f). Thus Bolzano‘s objective semantics
and the Platonic and hierarchically
structured universe of objective meanings
is essential to his whole conception of
explanation.

There are close parallels between Peirce
and Bolzano and they are due to the fact
that both their philosophies resemble that
of Leibniz very strongly indeed. Both did,
however, modify classical ontologism,
concentrating on how mathematicians
create and communicate as well as on the
semantics of mathematical affirmations or
communications. Both also consider
mathematics as the science of possibility
or of the possible states of affairs and both
understand that proofs do not exist
independently from mathematical theories,
but are parts of theories.

Finally, both Bolzano and Peirce were
concerned with elaborating alternatives to
the philosophy of consciousness, as
exemplified by Kant’s Critique and his
notion of a priori intuition in particular;
however, Bolzano denied the evolutionary
perspective, saying that Kant had
confounded mathematics as such with the
way in which humans develop mathematics,
whereas Peirce, in contrast, sought to
provide evolutionism with an objective basis.
The continuity of space and time is
objective, rather than subjective, as Kant
and Leibniz had believed.

The essential difference between Bolzano
and Peirce lies in the way how possibility
is conceived. Bolzano thinks about this
question in terms of the difference between
the actual and the possible. This means
that something like the set of all
possibilities exists a priori, waiting to
possibly be actualized. For Peirce, in
contrast, reality is an evolutionary process
realizing and producing objective
possibilities as well as their conditions.

Peirce over and again stressed that we
have to explain not only phenomena but
also the laws that govern them (Peirce
W4, 551f, see also Peirce, CP 1.175).
Peirce, unlike Bolzano, did not consider
mathematics to be an analytical science
from definitions. Reality is continuous and
thus cannot be described or determined.
This may even be interpreted on the level
of mathematics. Peirce in contrast to
Bolzano seems well aware of the fact that
there may exist various models of the
number line.

The main feature of mathematical
reasoning lies therefore in its perceptual
character and consists in the fact that all
“deep” symbolic meanings must have
been eliminated, in the same sense we
have described creative activity in Part I
above. A proof must enlarge our
knowledge and all ampliative or synthetic
reasoning is perceptual and inductive, or
as Peirce sometimes calls it, “abductive.”
This does not contradict the fact that
mathematical reasoning is necessary,
because “no necessary conclusion is any
more apodictic than inductive reasoning
becomes from the moment when
experimentation can be multiplied ad
libitum at no more costs than a summons
before the imagination” (Peirce, CP
4.531). Hence, it amounts to the same to
say that mathematics “busies itself in
drawing necessary conclusions,” and to
say that it occupies itself with ideal or
hypothetical states of things (Peirce, CP
3.558).

Mathematical proofs in the sense of Peirce
do not contain explanations. They consist
of apodictic judgments, showing clearly
that something is necessarily the case,
rather than explaining why that something
is the case. They are examples of
“knowledge that,” rather than “knowledge
why” in the sense of the Aristotelian
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distinction between proofs of the fact (hoti)
and proofs of the reasoned fact (dioti). “The
philosophers are fond of boasting of the pure
conceptual character of their reasoning. The
more conceptual it is the nearer it
approaches to verbiage” (Peirce, CP 5.147-
489). This would sound Kantian, were it not
for the reference to the importance of signs.

Already from the fact that a proof is a sign
and a sign is determined by its object and
combined with the requirement that
mathematical proofs are necessary and
thus apodictic, it follows that a proof is
essentially an icon and that its object is
nothing but the form of that icon. Peirce
affirms that mathematical reasoning
proceeds by means of the construction of
all kinds of diagrams and by experimenting
with them and observing what happens.
“Since a diagram .... is in the main an Icon
of the forms of relations in the constitution
of its Object, the appropriateness of it for
the representation of necessary inference
is easily seen” (Peirce, CP 4.531).

Peirce took Leibniz’s theory of a continuum
of representations from quite unconscious
and quasi imperceptible representations to
those most coercive to consciousness and
subsequently based his whole semiotic
epistemology on it. A realistic view must
see reality above and beyond all laws,
ideas and explanations as something
offering the possibility of understanding.
Peirce’s metaphor for such a view of reality
is the continuum. Reality is commonly
identified with the totality of existing objects
and facts. Sometimes, in a flush of
enlightened insight, relations or laws are
added to the furniture of reality. But this
does not help much. The set of all laws, or
possibilities of things, is a no less an
antinomical conception than the notion of
the set of all sets, which lies at the bottom
of Russell’s paradox. In a digital or discrete
world, with only 1 and 0, or perfectly right

and wrong, there would be no growth of
knowledge and therefore no knowledge
at al l .  Synechism is above al l  “a
regulative principle of logic prescribing
what sort of hypothesis is fit to be
entertained and explained” (Peirce, CP
6.173). Or, stated somewhat differently,
only a continuous reality makes analysis
and inductive generalization possible.
According to Peirce relations are not to
be reduced to determinate relata, but are
related to cont inua. This was as
important to the geometrical illustrations
of the classical incommensurabil ity
proofs as i t  was important to the
foundations of the calculus. Leibniz had
already emphasized these
epistemological  insights,  but had
remained bound to a substance ontology
in the Aristotelian sense.

What pr imari ly character izes
mathematics is the peculiarity of its
generalizations by means of the forming
of fertile hypotheses. A “hypothesis
substitutes, for a complicated tangle of
predicates attached to one subject, a
single conception” (Peirce, W3 337).
Such hypotheses are created by an
inductive process which Peirce called
abduction or abductive inference, adding
that “abductive inference shades into
perceptual judgment without any sharp
line of demarcation between them”
(Peirce, CP 5.181). Abductive reasoning
involves an element of intuition and
“intuition is the regarding of the abstract
in a concrete form, by the realistic
hypostatization of relations; that is the
one sole method of valuable thought”
(Peirce, CP 1.383).  This real ist ic
hypostatization occurs by means of the
construction and experimentation with all
kinds of diagrams. From the abductive
suggest ion, which synthesizes a
multitude of predicates, «deduction can
draw a prediction» (Peirce, CP 5.171).
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Thus the meaning and foundations of a
piece of mathematical knowledge, a
theory, for instance, are to be seen in the
intended applications and newly created
possibil it ies. Icons or images are
particularly well suited to make graspable
and conceivable the possible and potential
rather than the actual and factual. It should
also be mentioned in this context that
psychology and psychotherapy have
known for some time that icons or images
are particularly well suited to strengthening
what could be called “sense of possibility”
and which seems indispensable to a
person’s mental health (see the
proceedings of the 35th International
Congress on Psychoanalysis in San
Francisco, 1995). Confining a person—a
student, for example—to a certain
characterization of herself/himself would
mutilate her/his personality. Mathematical
explanation must therefore enlarge and
widen the perspective of the addressee of
the explanation and the real is generally
to be conceived of as process and
evolution.

III.It is rather common nowadays to
contrast subjective insight and explanation
with objective foundation and conviction
(Hersh, 1993).  Indeed, Hanna’s quest for
insight and understanding seems
completely psychological and has nothing
to do with objective concerns. Bolzano, in
contrast, maintaining a strong anti-
psychologistic attitude, conceives of
explanation in purely objective or logical
terms and in reference to a world of
truths in themselves, independent of any
actual insight. When in the course of the
19th/20th centur ies the humanit ies
(Geisteswissenschaften) were
developed by W. Dilthey (1833-1911) and
others, it became common to contrast
understanding and interpretation, as the
basis of the humanities, with scientific and
mathematical explanation. This distinction

resulted later on in the notion of the “two
cultures” (Snow). Snow’s basic thesis was
that the breakdown of communication
between the sciences and the humanities
(the «two cultures» of the title) was a major
hindrance to solving the world’s problems
(see C.P. Snow, 1993)

How can both sides come together? We
believe that these two different views can
be reconciled from a genetical perspective
and that for this the semiotic view and the
idea of mathematics as mathematization
are essential. The notion of interpretation
should be transformed as outlined in Part
I of this paper and scientists and
mathematicians should refrain from the
metaphysical realism and logical
objectivism that tends to identify reality with
our knowledge of it, thus confusing object
and sign.

A mathematical proof is a type, a type of
representation, rather than a token-
construction. One has to grasp the
integrated whole of it, not merely follow the
argument or the calculation. Or rather, one
has little choice here, as one will hardly be
able to memorize a complex proceeding
and repeat its application without analysis
and generalization.

Still this does not commit us to Platonism,
as an idea is not completely to be
dissociated from its possible applications
and the applications might affect our
conviction about what is essential or basic.
And to understand the logic of an
argument, one must not only follow its
consequences in the abstract, but must
also see how it applies in a particular
situation. Resnik and Kushner found it
hard, as they wrote, to see how someone
could understand the proof of the
intermediate value theorem “and yet ask
why the theorem is true (or what makes it
true).” They are right. This kind of
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insistence on more and more new why-
questions seems to happen when one
separates knowledge from i ts
development and application. But the
meaning resides in the applications.

In formal mathematics, facts are
explained by means of proofs and then
it has to be proved that the proof is
correct and so on ad infinitum. Every
proof is faced with the prerequisite of
proving that the proof be correct. And the
proof of the correctness of the proof
again meets the same requirement and
the proof of the correctness of the
correctness of the proof also … etc. This
dilemma is nicely described by Lewis
Carroll’s version of Zenon‘s paradox
(Carroll, 1905; see also: Peirce, CP
2.27).

As a rational being one cannot act
contrary to one’s own insights and there
is no insight without an application.
Lewis Carroll ’s version of the race
between Achilles and the Tortoise shows,
albeit unintentionally, that one cannot
really have knowledge or an insight and
keep from applying it. There is no
complete analysis without activity and
application. Mathematics is just as
constructive as it is analytical. Hence, it
is difficult to believe that mathematics is
meant “to explain,” in the usual
reductionistic understanding of the term.

In a reader on the philosophy of science
we are told: “We can explain the length
of the shadow by reference to the height
of the flagpole, and not vice versa”
(Newton-Smith 2000, 129). It seems
natural  to ask, upon perceiving a
shadow, whence it comes from. Nobody,
however, would consider the shadow to
be the cause of the flagpole. But what
about mathematics? Let us begin with
Kant.

A “new light,” says Kant, must have flashed
on the mind of people like Thales, when
they perceived that the relation between
the length of a flagpole and the length of
its shadow enables one to calculate the
height of the pyramid, given the length
of its shadow. “For he found that it was
not sufficient to meditate on the figure
as it lay before his eyes,… and thus
endeavor to get at knowledge of its
properties, but that it was necessary to
produce these properties, as it were, by
a positive a priori construction” (Kant,
Critique of Pure Reason, Preface to the
Second Edition 1787). And indeed, the
f lagpole as such has no posi t ive
relationship whatsoever to the pyramid.

Now one might say that mathematics is
not concerned with flagpoles, pyramids
and the like. But such talk does not help
very much, given that we have
witnessed, since Descartes‘
arithmetization of geometry, a gradual
destruct ion of the pre-establ ished
harmony between method and object of
mathematical inquiry that Bolzano
wanted to maintain (Boutroux 1920,
193f). The history of mathematics must
be seen as the history of
mathematizat ion, including the
mathematization of mathematics itself
(Lenhard y Otte, 2005). Therefore,
mathematics is characterized first of all
by the manner in which it generalizes.
Mathematicians as a rule do not see
things this way. They are either Platonists
or Intuitionists and they dislike the semiotic
approach to mathematics (Hermann Weyl
is a noticeable exception to this: see:
Werke, vol. IV, p. 334).

G. Cantor (Cantor 1966, 83), for example,
believed that applied mathematics must
deal with real explanations or foundations
of things and thus must be based on sound
metaphysics, whereas pure mathematics
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is defined by its “freedom” to form
concepts as one pleases (given that they
do not result in logical contradictions).
Kant, on the other hand, being confined
to an epistemology of consciousness,
found it necessary to employ the idea
that mathematical concepts and relations
must be “constructed in intuition.” And
people like Poincare or Brouwer followed
him in this conviction. This, however,
imposes severe l imitat ions on the
conception of mathematics, because it
introduces an absolute dist inct ion
between concepts and intuitions and
between analytical and synthetical
knowledge.

Peirce considered these distinctions as
relat ive and hence his bel ief  that
abduction, as the source of mathematical
generalization, on the one hand, and
empirical perception, on the other hand,
are not as different as it may appear. In
semiotics, to explain means to represent.
And a representation is just a perception
cast into a certain form. In this context,
Peirce develops the not ion of the
perceptual judgment as an unconscious
inference. There is no sharp demarcation
between mathematical and perceptual
judgments respectively. When making a
perceptual judgment we simply cannot
really distinguish between what comes
from the outside world and what stems
from our own interpretation. “On its side,
the perceptive judgment is the result of
a process, although of a process not
sufficiently conscious to be controlled, or,
to state it more truly, not controllable and
therefore not fully conscious. If we were
to subject this subconscious process to
logical analysis … this analysis would be
precisely analogous to that which the

sophism of Achilles and the Tortoise
applies to the chase of the Tortoise by
Achilles, and it would fail to represent the
real process for the same reason”
(Peirce, CP 5.181).

Within a perceptual judgment, the
perception of generals (or ideal objects)
and of part icular data seems
inseparable, or, stated differently, the
processes of creation and of application
of symbol ic representat ions are
inseparable. Analysis and interpretation
interact. The relativity of the distinction
between our inner and outer world could
thus be interpreted as demanding its
conceptualization in interactive terms,
like the concept of representation. Once
more we have to conclude that a proof
that is supposed to explain must
generalize.

Let us consider a concrete example,
given by Boulignand (1933), which
concerns three different proofs of the
Theorem of Pythagoras. The proofs of
the Pythagorean Theorem are commonly
considered to be divided into three main
types: proofs by shearing, which depend
on theorems that the areas of
parallelograms (or triangles) on equal
bases with equal heights are equal,
proofs by simi lar i ty and proofs by
dissect ion, which depend on the
observation that the acute angles of a
right triangle are complementary. Among
these proofs the proofs by similarity play
a special role because they indicate their
embeddedness into the theoretical
structure of  axiomatized Euclidean
geometry. The Pythagorean Theorem is
equivalent to the Parallel Postulate, after
all.
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The following diagrams represent
examples of these three types of proofs.

1.

2.

3.

The first proves, the second explains and
the third is called intuitive but not
explanatory by Boulignand.

The first proof proceeds in the traditional
manner that we have become accustomed
to in school: Since the angles BAC and
BAG are right it follows … Consider now
the triangles ABD and FBC … Since the
triangles are congruent it follows that ….
etc.etc.…

The second proof requires a relational
understanding of the notion of “area,”
rather than an empiricist one. The area of
a figure is defined then as the relation of
that figure to the unit square Q(1). We have
Q(x)=x2 Q(1). Therefore the areas of similar
plane figures are to each other as the
squares of their corresponding sides. Since
we have ADC+ADB=ABC, the generalized
theorem of Pythagoras follows.

The third proof simply requires some
playing around with plane figures like in a
geometrical puzzle and observing certain
concrete relationships of equality and
difference.

The interesting distinction seems to be that
between 2) and 3), whereas the distinction
between 1) and 2) is familiar and in some
way refers to the well-known distinction
between the analytic and synthetic, or
between corollarial and theorematic
reasoning. Corollarial reasoning relies only
on that which is enunciated in the premises
in a rather straightforward manner. If,
however, a proof is possible only by
reference to other things not mentioned in
the original statement and to be introduced
by conceptual construction and
generalization, such a proof is theorematic.

The first idea that comes to mind with
respect to the contrast between 2) and 3)
is that it must be something modern,
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because it has to do with relational thinking
and with the opposition between
theoretical thought and common
knowledge, or between the exact sciences
and the humanities (Dilthey). We have
talked about this difference already and
one should remember the fact that
Euclidean axiomatics and modern
axiomatics in the sense of Hilbert are
representing this difference (Otte 2003,
204). What is more important still: in
modern axiomatic theory mathematical
objects or facts are the objects and facts
of a theory and proofs only make sense
within the context of a theory? In traditional
Euclidean geometry all this is different. The
objects are given by unaided intuition,
independently of any theory, and the proofs
do not refer to an explicit and fixed
theoretical context as their base, but refer
to everyday rationality in the sense of
Aristotelian demonstrative science.

Now, the second proof is modern in the
described sense, whereas the other two
more or less breathe in the spirit of
Aristotelian science and traditional thinking
in terms of substances and their essential
properties.

When classifying the second proof as
explanatory, we employ a dynamic
conception of knowledge and explanation,
as it has been described in semiotic terms
above. The proof indicates the possibility
of many relationships and thus makes us
feel the systemic and theoretical character
of knowledge. The other two proofs are
foundationalist, assuming a fixed
hierarchical organization of knowledge
based on unaided intuition and everyday
experience.

Intuition seems forceful, but neither an
absolute insight or intuition nor a
determinate hierarchy of levels of
knowledge actually exist. This is very often

misunderstood. For example, the well-
known Gestalt psychologist Max
Wertheimer (1880-1943) comments on the
presentation and solution of Zeno’s
paradoxes by means of a geometric series
that is current in present day mathematics.
He himself comments on the current proof
of the convergence of that series, which is
accomplished by multiplying the series by
a and subtracting afterwards. Set S = 1 +
a = a2 +  ... Then S - aS = 1 or S = 1/(1 - a).

Wertheimer wri tes: “ I t  is correct ly
derived, proved, and elegant in its
brevity. A way to get real insight into the
matter, sensibly to derive the formula is
not nearly so easy; it involves difficult
steps and many more. While compelled
to agree to the correctness of the above
proceeding, there are many who feel
dissatisfied, tricked. The multiplication of
(1 + a + a2 + a3 + ...) by a together with the
subtraction of one series from the other,
gives the result ;  i t  does not give
understanding of how the continuing
series approaches this value in its
growth.” (Wertheimer, 1945)

Wertheimer wants an intui t ive
demonstration. Intuition is essentially the
seeing of the essence of a thought or
object as a form or object itself. Things
do not have, however, a unique and
demonstrable essence, as we have
argued before. The essence of
something cannot be anything but the
essence of a representation of that thing
and therefore the diagrammatic proof
which Wertheimer does not accept as
satisfactory, could be called an intuitive
proof, exactly like proof number 3 of the
theorem of Pythagoras above. Only, in
the present case, the intuition is directed
towards the diagrammatic representation
itself and to its form. It is also more
advanced, because it contains some
general methodological message.
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If we could establish a direct authentic and
“natural” relationship to the object of
knowledge then this relationship would
also exist in a mechanical form; it would
be a relation between reactive systems
rather than cognitive ones and thus would
be just a singular event without general
meaning. The idea of sign marks the
difference at this point as it introduces a
general element. Our intuitions serve to
create expressive and illuminating
representations. And in this way we learn to
act within the world around us. To understand
means exactly to create a representation, as
the very example that Wertheimer has
criticized shows. We therefore have to
renounce searching for definite meanings
and absolute foundations of knowledge.

This we can learn from the fact that all our
thinking is by means of signs.

Classified in terms of Peirce’s categories, the
third or intuitive proof represents Firstness,

the first Secondness and the second, or
explanatory in our sense, Thirdness.
Thirdness is, as Peirce says, a synonym
of representation and evolution and thus
of continuity (CP 6.202). But Thirdness
presupposes Firstness and Secondness,
or stated semiot ical ly,  symbol ic
representation depends on iconic and
indexical elements. Thus a proof may be
a symbol, but mathematical reasoning is,
as was said, diagrammatic and as such
is based mainly on iconic signs with
indexical elements as parts of the icon.
As Peirce adds: “Firstness, or chance,
and Secondness, or brute reaction, are
other elements, without the
independence of which Thirdness would
not have anything upon which to operate”
(CP 6.202). What primarily characterizes
mathematics is the peculiarity of its
generalizations and this is a symbolic
process operat ing by means of
hypostatic abstractions (Otte 2003,
218f).
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