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A sign may recall a certain concept or combination of concepts from somebody’s memory,
and can also prompt somebody to certain actions.  In the first case we shall call a sign a
symbol, in the second a signal.  The (nature of the) effect of the sign depends on context
and the actual mental situation of the reader.  Van Dormolen, 1986, p.157.

RESUMEN

Usando la teoría de signos de Charles Sanders Peirce, este artículo introduce la noción
de riqueza matemática. La primera sección argumenta la relación intrínseca entre las
matemáticas, los aprendices de matemáticas, y los signos matemáticos. La segunda,
argumenta la relación triangular entre interpretación, objetivación, y generalización. La
tercera, argumenta cómo el discurso matemático es un medio potente en la objetivación
semiótica. La cuarta sección argumenta cómo el discurso matemático en el salón de
clase, media el aumento del valor de la riqueza matemática del alumno, en forma
sincrónica y diacrónica, cuando él la invierte en la construcción de nuevos conceptos.
La última sección discute cómo maestros, con diferentes perspectivas teóricas, influyen
en la dirección del discurso matemático en el salón de clase y, en consecuencia, en el
crecimiento de la riqueza matemática de sus estudiantes.

PALABRAS CLAVE:  Riqueza matemática, interpretación, relación con signos,
la tríada interpretación-objetivación-generalización.

ABSTRACT

Using the Peircean semiotic perspective, the paper introduces the notion of mathematical
wealth.  The first section argues the intrinsic relationship between mathematics, learners
of mathematics, and signs.  The second argues that interpretation, objectification, and
generalization are concomitant semiotic processes and that they constitute a semiotic
triad.  The third argues that communicating mathematically is a powerful means of semiotic
objectification.  The fourth section presents the notion of mathematical wealth, the learners’
investment of that wealth, and the synchronic-diachronic growth of its value through
classroom discourse.  The last section discusses how teachers, with different theoretical
perspectives, influence the direction of classroom discourse and the growth of the learner’s
initial mathematical wealth.
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RESUMO

Usando a teoria de signos de Charles Sanders Peirce, este artigo introduz a noção de
riqueza matemática. A primeira secção argumenta a relação intrínseca entre a
matemática, os aprendizes de matemáticas, e os signos matemáticos. A segunda,
argumenta a relação triangular entre interpretação, objetivação e generalização. A terceira,
argumenta como o discurso matemático é um potente meio na objetivação semiótica. A
quarta seção argumenta como o discurso matemático na sala de aula adequar o aumento
do valor da riqueza matemática do aluno, em forma sincrônica e diacrônica, quando ele
inverte a construção de novos conceitos. A última seção discute como maestros, com
diferentes perspectivas teóricas, influem na direção do discurso matemático na sala de
aula e, conseqüentemente, no crescimento da riqueza matemática de sus estudantes.

PALAVRAS CHAVES:  Riqueza matemática, interpretação, relação com signos,
a tríade interpretação-objetivação-generalização.

RÉSUMÉ

En utilisant la perspective sémiotique peircienne, cet article introduit la notion de richesse
mathématique. La première section soutient qu’il y a une relation intrinsèque entre les
mathématiques, les apprenants des mathématiques et les signes. La deuxième section
soutient que l’interprétation, l’objectivation et la généralisation sont des processus
sémiotiques concomitants et qu’ils constituent une triade sémiotique. La troisième section
soutient que la communication mathématique est un puissant moyen sémiotique
d’objectivation. La quatrième section présente la notion de richesse mathématique,
l’investissement de cette richesse par les apprenants et la croissance synchronique et
diachronique de sa valeur à travers le discours de la salle de classe. La dernière section
discute de la façon dont les enseignantes et enseignants, avec des perspectives
théoriques différentes, agissent sur l’orientation de la discussion dans la salle de classe
et sur l’enrichissement de la pensée mathématique initiale des apprenants.

MOTS CLÉS: Richesse mathématique, interprétation, relation avec des signes,
la triade interprétation-objectivation-généralisation.

Mathematics and its Intrisic
Relationship with Signs

Since ancient times, philosophers and
mathematicians alike have been
concerned with the definition of
mathematics as a scientific endeavor and

as a way of thinking.  These definitions
have evolved both according to the state
of the field at a particular point in time and
according to different philosophical
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perspectives.  Davis and Hersh, assert that
“each generation and each thoughtful
mathematician within a generation
formulates a definition according to his
lights” (1981, p. 8).  To define mathematics
is as difficult as to define signs.  It is not
easy to define either one without
mentioning the other, as it is not easy to
define them in a paragraph and even less
in a couple of sentences.  Mathematicians
make use of and create mathematical signs
to represent, “objectify”, or encode their
creations.  On the other hand, learners
interpret mathematical signs and their
relationships both to decode the conceptual
objects of mathematics and to objectify (i.e.,
encode) their own conceptualizations.

All kinds of signs and sign systems are
ubiquitous in our lives but so is
mathematics.  Given the fascinating and
ineludible dance between mathematics and
signs, it is not surprising that some
mathematicians become semioticians.
Peirce, for example, dedicated several
volumes to analyze the relationship
between mathematical objects and
mathematical signs (The New Elements of
Mathematics, Vols. I, II, III, IV, 1976) as well
as several essays to discuss the essence
of mathematics (for example, the one
published in Newman’s World of
Mathematics, 1956).  Peirce defines
mathematics as the science that draws
necessary conclusions and its propositions
as “fleshless and skeletal” requiring for their
interpretation an extraordinary use of
abstraction.  He also considers that
mathematical thought is successful only
when it can be generalized.  Generalization,
he says, is a necessary condition for
mathematical thinking.

Rotman (2000), inspired by Peirce’s theory,
has dedicated a book to define
mathematics as a sign.  At the beginning
of his book, he gives an overarching

definition of mathematics to conclude that
mathematics is essentially a symbolic
practice.

Mathematics is many things; the
science of number and space; the
study of pattern; an indispensable tool
of technology and commerce; the
methodological bedrock of the
physical sciences; an endless source
of recreational mind games; the
ancient pursuit of absolute truth; a
paradigm of logical reasoning; the
most abstract of intellectual
disciplines.  In all of these and as a
condition for their possibility,
mathematics involves the creation of
imaginary worlds that are intimately
connected to, brought into being by,
notated by, and controlled through the
agency of specialized signs. One can
say, therefore, that mathematics is
essentially a symbolic practice resting
on a vast and never-finished
language—a perfectly correct but
misleading description, since by
common usage and etymology
“language” is identified with speech,
whereas one doesn’t speak
mathematics but writes it.  (2000, p.
ix, emphasis added).

But where does this symbolic practice
come from?  Is mathematics, as an
expression of the symbolic behavior of the
human species, a part of all cultures?
Davis and Hersh (1981) argue that
mathematics is in books, in taped lectures,
in computer memories, in printed circuits,
in mathematical machines, in the
arrangement of the stones at Stonehenge,
etc., but first and foremost, they say, it must
exist first in people’s minds.  They
acknowledge that there is hardly a culture,
however primitive, which does not exhibit
some rudimentary kind of mathematics.
There seems to be a common agreement
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among White (1956), Wilder (1973), Bishop
(1988), and Radford (2006a) for whom
mathematics is essentially a cultural
symbolic practice that encapsulates the
progressive accumulation of constructions,
abstractions, generalizations, and
symbolization of the human species.
Progress, White contends, would have not
been possible if it were not for the human
ability to give ideas an overt expression
through the use of different kinds of signs
(or what he calls the human symbolic
behavior).  He asserts that human
communication, as the most important and
general of all symbolic behaviors, facilitates
new combinations and syntheses of ideas
that are passed from one individual to
another and from one generation to the
next.  White also stresses that mathematics
like language, institutions, tools, the arts,
etc.   is a cultural expression in the stream
of the total culture.  In fact, he argues that
mathematics is a synthesizing cultural
process in which concepts react upon
concepts and ideas mix and fuse to form
new syntheses.  For White, culture is the
locus of mathematical reality:

Mathematical truths exist in the
cultural tradition in which the
individual is born and so they enter
his mind from the outside.  But apart
from cultural tradition, mathematical
concepts have neither existence nor
meaning, and of course, cultural
tradition has no existence apart from
the human species.  Mathematical
realities thus have an existence
independent of the individual mind,
but are wholly dependent upon the
mind of the species.  (1956, pp.
2350-2351, emphasis added)

If mathematics is a symbolic practice, then
the understanding of the nature of sign
systems (i.e. the networking of signs over
signs to create new sign-references

according to a particular syntax, grammar,
and semantics) is important for the
teaching and learning of mathematics.
Given that individuals, by nature, possess
symbolic behavior and mathematics is a
symbolic practice, then why do some
students come to dislike mathematics as
a subject and very soon fall behind?  In
general, semiotics theories give us a
framework to understand the mathematical
and the non-mathematical behavior of our
students.  Among different theoretical
perspectives on semiotics, Peirce’s theory
of signs helps us to understand how we
come to construct symbolic relationships
based on associative iconic and indexical
ones.  A relation is iconic when it makes
reference to the similarity between sign
and object; it is indexical when it makes
reference to some physical or temporal
connection between sign and object; and
it is symbolic when it makes reference to
some formal or merely agreed upon link
between sign and object, irrespective of
the physical characteristics of either sign
or object.

Representation and interpretation are two
important aspects of Peirce’s theory.  He
sees representation as the most essential
mental operation without which the notion
of sign would make no sense (Peirce,
1903) and considers that the mind comes
to associate ideas by means of referential
relations between the characteristics of
sign-tokens and those of the objects they
come to represent.  As for interpretation,
he considers that without the interpretation
of signs, communicating with the self and
with others becomes an impossible task
(Peirce, CP vols. 2 and 4, 1974).  That is,
without being interpreted, a sign as a sign
does not exist.  What exists is a thing or
event with the potential of being interpreted
and with the potential of becoming a sign.
Metaphorically speaking, a sign is like a
switch; it becomes relevant and its
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existence becomes apparent only if it is
turned on-and-off, otherwise, the switch is
just a thing with the potential to become a
switch.  Likewise, a sign-token becomes a
sign only when its relationship to an object
or event is turned on in the flow of attention
of the interpreting mind.  That cognitive
relationship between the sign-token and
the interpreting mind is essential in Peirce’s
semiotic theory; in fact, it is what
distinguishes his theory from other theories
of signs.  He crystallizes this interpreting
relation between the sing-token and the
individual as being the interpretant of the
sign.  This interpretant has the potential to
generate a new sign at a higher level of
interpretation and generalization.  At this
higher level, the new sign could, in turn,
generate other iconic, indexical, or
symbolic relationships with respect to the
object of the sign.  However, while the
individual generates new interpretants, the
object represented by the sign undergoes
a transformation in the mind of the
individual who is interpreting.  That is, the
object of the sign appears to be filtered by
the continuous interpretations of the
learner.  In summary, Peirce considers the
existence of the sign emerging both from
the learner ’s intellectual labor to
conceptualize the object of the sign and
from the construction of this object in the
learner’s mind as a result of his intentional
acts of interpretation.

A sign stands for something to the
idea that it produces or modifies. Or,
it is a vehicle conveying into the
mind something from without.  That
for which it stands is called its object;
that which it conveys, its meaning;
and the idea to which it gives rise,
its interpretant. (CP 1.339; emphasis
added)

By a Sign I mean anything whatever,
real or fictile which is capable of a

sensible form, is applicable to
something other than itself…and
that is capable of being interpreted
in another sign which I call its
Interpretant as to communicate
something that may have not been
previously known about its Object.
There is thus a triadic relation
between any Sign, and Object, and
an Interpretant.  (MS 654. 7)
(Quoted in Pamentier, 1985;
emphasis added).

Peircean semiotics helps to understand
and explain many aspects of the
complexity of the teaching and learning of
mathematics.  For example, teachers’ and
learners’ expressions of their
interpretations of mathematical signs by
means of writing, reading, speaking, or
gesturing; the interrelationship of the
multiple representations of a concept
without confounding the concept with any
of its representations; and the dependency
of mathematical notation on interpretation,
cultural context, and historical convention.
In trying to understand the semiotic nature
of the teaching and the learning of
mathematics, the above list about the
semiotic aspects of the teaching-learning
activity is anything but complete.

Brousseau, for example, contends that
mathematicians and teachers both perform
a “didactical practice” albeit of a different
nature.  Mathematicians, he says, do not
communicate their results in the form in
which they create them; they re-organize
them, they give them the most general
possible form; “they put knowledge into a
communicable, decontextualized,
depersonalized, detemporalized form”
(1997, p. 227).  This means, that they
encode their creations using mathematical
sign systems or they create new signs if
necessary.  That is, they objectify or
symbolize their creations (i.e., knowledge
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objects) through spacio-temporal signs.  On
the other hand, the teacher undertakes
actions in the opposite direction.  She,
herself, interprets mathematical meanings
embedded in spacio-temporal signs (sign-
tokens), decodes conceptual objects, and
looks for learning situations that could
facilitate the endowment of those sign-tokens
with mathematical meanings in the minds of
the learners.  Thus, mathematicians and
teachers of mathematics have a necessary
interpretative relationship with the sign
systems of mathematics (i.e., semiotic
mathematical systems) because they
continuously use them to encode, interpret,
decode, and communicate the mathematical
meanings of conceptual objects.

Teacher’s and Learner’s
Interpretations and Objectifications

The interpretation of signs is important for
two reasons.  First, signs are not signs if
they are not interpreted; being a sign
means being a sign of something to
somebody.  Second, the meaning of a sign
is not only in the sign but also in the mind
interpreting that sign.  Now the question is:
Does a sign objectify?  According to
Peirce’s definition of signs, the answer is
yes.  A sign does objectify (i.e., It does make
tangible) the object (conceptual or material)
that it stands for.  However, the sign not
only objectifies but it also communicates
(to the interpreting mind) something that
has not been previously known about the

object.  Thus, Peirce’s definition of signs
implies a continuous process of
interpretation and as a consequence, a
concomitant process of gradual
objectification.

Radford (2006b), on the other hand,
considers that to objectify is to make visible
and tangible something that could not be
perceived before.  He defines
objectification as “an active, creative,
imaginative, and interpretative social
process of gradually becoming aware of
mathematical objects and their properties”.
This definition is not in contradiction with
Peirce’s definition of signs.  Radford (2003)
also defines means of objectification as
“tools, signs of all sorts, and artifacts that
individuals intentionally use in social-
meaning-making processes to achieve a
stable form of awareness, to make
apparent their intentions, and to carry out
their actions to attain the goal of their
activities” (p. 41).  This definition is also in
harmony with Peirce’s definition of
interpretant.

Since mathematical objects make their
presence manifest only through signs and
sign systems, how can teachers help
learners to enter into the world of these
semiotic systems and break the code, so
to speak, to “see” those objects by
themselves?  Which mathematical objects
do learners interpret from signs2?  Or  better,
what “objects” do sign-tokens stand for in
the minds of learners and teachers? Would

    Peirce gave several definitions of signs without contradicting previous definitions; instead he extended them.  The

invariant in his definitions is the triadic nature of the sign.  The variation is in the names he gave to the sign-vehicle/ sign-

token or material representation of the sign.  First, he called sign the material representation of the sign, then sign-vehicle,

and then representamen.  Some mathematics educators have favored the sign triad object-sign-interpretant, others, like

myself, have favored the sign triad object-representamen-interpretant because it does not use the word sign to indicate,

at the same time, the triad and a term in the triad.  In this paper, I use the words representamen, representation, and sign-

token interchangeably.  However, Peirce used the term representation in the general sense of being a necessary operation

of the human mind.

2
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learners and teacher ‘interpret’ the same
mathematical objects (i.e., knowledge
objects) from sign relations in mathematical
sign systems?  Who objectifies what?  What
are the “products or effects” of teacher’s and
learners’ interpretations and objectifications?
What are the teacher’s interpretations of the
learners’ interpretations?  It appears that
teachers’ and learners’ interpretations and
objectifications go hand in hand in the
teaching-learning activity.  Because of the
triadic nature of the sign, there is a necessary
and concomitant relationship between
objectification and interpretation; there is no
interpretation without objectification and no
objectification without interpretation.  In
addition, these two processes are linked to a
third concomitant process, the process of
generalization.

Mathematicians objectify their creations
inventing new mathematical signs or
encoding them, using already established
signs and sign systems.  Teacher and
learners re-create knowledge objects by
interpreting mathematical signs in a variety
of contexts; by doing so, they undergo their
own processes of objectification. There
seems to be running, in parallel, three
processes of objectification: the
objectification of the teacher, the
objectification of the learners, and the
teacher’s objectification of the learners’
objectifications.  This seems to be a
cumbersome play with words, although this
is at the heart of the interrelationship between
teaching and learning.  Obviously, teacher
and learners objectify, but do they objectify
the same thing?  Are these objectifications
isomorphic or at least do they resemble each
other?  Is the teacher aware of these
processes of objectification?  If so, then the
teacher has the potential: (a) to question and
validate her own interpretations and
objectifications; (b) to make hypotheses
about the learners’ objectifications; (c) to
question the learners to validate her

hypothesis in order to guide their processes
of interpretation and objectification; and (d)
to differentiate between her interpretations
and objectifications and the learners’
interpretations and objectifications.

When teachers and learners engage in the
teaching-learning activity, who interprets
and what is interpreted is somewhat
implied, but it is nevertheless tacit, in the
processes of objectification and
interpretation.  Obviously, in one way or
another, teachers appear to play an
important role in the learners’ processes of
interpretation and objectification.  Brousseau
appears to indicate these levels of
interpretation.  “The teacher’s work …
consists of proposing a learning situation to
the learner in such a way that [the learner]
produces her knowing as a personal answer
to a question and uses it or modifies it in order
to satisfy the constraints of the milieu [which
is managed by necessary contextual and
symbolic relationships] and not just the
teacher’s expectations” (1997, p. 228,
emphasis added).  Here, Brousseau points
out the difference between learners’
interpretations and teachers’ interpretations
and intentions.  The question is whether or
not the teacher ’s intentions and
interpretations are realized in the students’
interpretations and objectifications.  In other
words, do the teacher’s and the learners’
interpretations and objectifications, at least,
resemble each other?

The teacher may design learning situations
to induce learners’ construction of
mathematical objects and relationships
among those objects; or the teacher may
design learning situations in which the
mathematical object is directly delivered as
if it were a cultural artifact ready to be
“seen” and memorized by the learners,
while saving them the cost of their own
abstractions and generalizations.  In the
latter case, the learners could be
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objectifying only the iconic or indexical
aspects of the mathematical signs without
capturing the symbolic aspects of those
signs and their symbolic relations with other
signs.  In the former case, the learners
capture both the symbolic aspects of the
signs and their symbolic relations with other
signs.  This means that the learner is able
to unfold those signs to “see” not only the
symbolic aspects but also the indexical and
iconic aspects embedded in them.  Thus,
learners and teacher could be interpreting
different aspects of the mathematical signs
(iconic, indexical, or symbolic) and, in
consequence, interpreting the nature of
mathematical objects from different levels
of generalization and abstraction.

But what is the nature of the mathematical
objects?  How many types of objects could
be interpreted from mathematical signs?
Duval (2006) calls our attention to different
types of objects:

(1) Objects as knowledge objects when
attention is focused on the invariant of
a set of phenomena or on the invariant
of some multiplicity of possible
representations.  Mathematical objects
like numbers, functions, vectors, etc. are
all knowledge objects.

(2) Objects as transient phenomenological
objects when the focus of attention is
on this or that particular aspect of the
representation given (e.g., shape,
position, size, succession, etc.).

(3) Objects as concrete objects when the
focus of attention is only on their
perceptual organization.

Thus given a sign-token (i.e., a
representamen or a representation), one
could interpret at face value a concrete object
if one focuses strictly on the material aspects
of this semiotic means of objectification

without constructing relationships with other
representations.  One could also interpret a
phenomenological object if one goes beyond
pure perception and focuses on aspects of
those representations in space and time.   Or
one could also interpret a knowledge object
if one focuses on the invariant relations in a
representation or among representations.
For example, Duval (2006) considers that the
algebraic equation of a line and its graph
could be seen as phenomenological objects
when one focuses on the material aspects
of these representations (i.e., iconic and
iconic-indexical aspects of the sign-tokens
or representations); they could be knowledge
objects if one focuses on the invariance of
these representations (i.e., symbolic
aspects).  Once one is able to interpret and
to objectify knowledge objects, one should
be able to unfold the phenomenological (i.e.,
iconic, iconic-indexical) and material (i.e.,
iconic) aspects of those objects.  However,
if one objectifies only phenomenological and
concrete objects, one would not necessarily
come up with the symbolic aspects of their
corresponding knowledge objects.

In a nutshell, Duval’s characterization of
‘objects’ points out the semiotic stumbling
blocks of the teaching and learning of
mathematics.  In this characterization, the
manifestation of a knowledge object
depends not only on its representation but
also on the human agency of the
interpreter, user, producer, or re-producer
of that object.  Objects could be either the
interpretation of pure symbolic relations
embedded in the sign-tokens or
representations (i.e., knowledge objects or
pure signifieds); or they could be pure
material tokens with no signifieds (i.e.,
concrete objects or concrete things); or
they could be materially based tokens
interpreted in time and space (i.e.,
phenomenological objects).  The best case
would be when the knowledge object is
objectif ied in space and time with
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structured signifieds and with the potential
of being used again in private and inter-
subjective conceptual spaces; and, vice
versa, when mathematical knowledge
objects are decoded from the material sign-
tokens or representations without escaping
their extension in space and their
succession in time.

As teachers and learners engage in the
teaching-learning activity, which objects are
the teacher referring to and which objects are
the learners interpreting, objectifying, and
working with?  In the best of all scenarios,
teacher and learners could interpret, from the
same sign-token or representation, the same
knowledge object.  However, sometimes
learners might only be interpreting concrete
objects (i.e., concrete marks) or
phenomenological objects missing, in the
process, the knowledge object; meanwhile
the teacher might be interpreting that learners
are interpreting knowledge objects. This
situation would clearly mark a conceptual
rupture between teacher and learners.
Therefore, interpreting in the classroom is
a process that unfolds at three levels: (1)
the level of those who send an intentional
message (the teacher or the students); (2)
the level of those who receive and interpret
the message (the learners or the teacher);
and (3) the level of the sender’s interpretation
of the receiver’s interpretation.  Thus, in the
teaching-learning activity, the interpretation
process is not only a continuous process of
objectification but it is also a relative
process (relative not only to teachers and
learners but also relative to their prior
knowledge, not to mention their beliefs
about knowledge and knowing).

Communicating  Mathematically as a
Means of Objectification

Communication in the mathematics
classroom was viewed as depending

exclusively on language (syntax and
grammar), the active and passive lexicon
of the participants, and the nature of the
content of the message (Austin and
Howson, 1979).  Now, we have become
aware that communication depends not
only on natural language but also on the
specific sublanguages of different fields of
study, on linguistic and non-linguistic
semiotic systems, and on a variety of social
and cultural contexts in which the content
of the message is embedded (Halliday,
1978; Habermas, 1984; Bruner, 1986;
Vygotsky, 1987; Steinbring et al. 1998).
Communication is also influenced by the
behavioral dispositions and expectations
of the participants as well as by their
intersubjective relations of power
(Bourdieu, 1991).  Thus, perspectives on
communication, in general, appear to have
gained in complexity rather than in
simplicity.  Hence, perspectives on
communication in the mathematics
classroom have changed.  This
communication depends on natural
language, mathematical sublanguage, and
mathematical sign systems that mediate
teacher’s and learners’ interpretations of
mathematical objects.

Rotman (2000) points out a special feature
of mathematical communication.  He
contends that in order to communicate
mathematically, we essentially write.  He
contends that writing plays not only a
descriptive but also a creative role in
mathematical practices.  He asserts that
those things that are described (thoughts,
signifieds, and notions) and the means by
which they are described (scribbles) make
up each other in a reciprocal manner.
Mathematicians, as producers of
mathematics, Rotman says, think their
scribbles and scribble their thinking.
Therefore, one is induced to think that
learners of mathematics should do the
same in order to produce and increase their
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personal ‘mathematical wealth’ as a
product of their own mathematical labor.
Such wealth does not accumulate all at
once, but rather, it accumulates gradually
in a synchronic as well as in a diachronic
manner.  We will enter the discussion of
mathematical wealth and its synchronic-
diachronic formation in the next section.

It appears that communicating
mathematically is first and foremost an act
of writing in the form of equations,
diagrams, and graphs, supported all along
by the specialized sublanguage of
mathematics (mathematical dictionaries
are a living proof that a mathematical
sublanguage exists).  We also need to
consider that writing is not an isolated act.
Acts of writing are concomitant with acts of
reading, listening, interpreting, thinking, and
speaking.  All these acts intervene in
semiotic processes of objectification
resulting from personal processes of
interpretation by means of contextualization
and de-contextualization, concretization
and generalization.  That is, communicating
mathematically depends on the synergy of
the processes of interpretation,
objectification, and generalization.

Gay (1980), Rossi-Landi (1980), and
Deacon (1997) argue that any semiological
system only has a finite lexicon but its
semantics accounts for an unlimited series
of acceptable combinations and that some
of these combinations propose original
ways of describing linguistic and
extralinguistic reality.  By the same token,
the semiotic system of mathematics has a
finite number of tokens and a finite set of
axioms, theorems, and definitions (Ernest,
2006).  When these elements are
combined, they account for a large number
of acceptable combinations that describe
or justify, create or interpret, prove or verify,
produce or decode already culturally
structured mathematical objects.  In

discovering, constructing, apprehending,
reproducing, or creating mathematical
objects, reading and writing, listening and
speaking become essential means for
producing and interpreting combinations of
referential relations (whether iconic,
indexical, or symbolic) in a space that is
both visible and intersubjective.

Vygotsky (1987) contends that in any
natural language the writing and speaking
acts are of different nature.  Writing, he
says, is a monological activity in which
context is mental rather than physical and
therefore it does not benefit from the
immediate stimulation of others.  This
makes writing a demanding mental activity
that requires not only the syntax and
grammar of the language in use, but also
the conceptual objects (i.e., knowledge
objects) to be encoded or decoded using
particular signs or combination of signs.  In
contrast, Vygostsky argues that oral
dialogue is characterized by the dynamics
of turn-taking determining the direction of
speech: in oral dialogue, questions lead to
answers and puzzlements lead to
explanations.  Written speech, instead, is
not triggered by immediate responses as
in oral dialogue.  In writing, the unfolding
of an argument is based much more on
the personal and private labor of the
individual.  What Vygotsky argues about
written and oral speech in the context of
language can be transferred to the context
of mathematical communication inside and
outside of the classroom.  It is one thing to
clarify one’s mathematical ideas when
debating them and another to produce
them as the result of one’s own isolated
mental labor and personal reflection.  Both
types of communication are commonly
used among mathematicians (Rotman,
2000).  In the last decades, oral and written
modes of interacting in the classroom have
been accepted as appropriate ways of
communicating mathematically in the
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classroom (National Council of Teachers
of Mathematics, Standards, 2000).

Rotman (2000) also considers that writing
and thinking are interconnected and co-
terminous, co-creative, and co-significant.
There is no doubt that for professional
mathematicians who are in the business
of producing mathematical knowledge this
should be the case.  But are writing and
thinking always interconnected, co-
creative, and co-significant activities for the
learners?  Or are the learners using writing
to take into account only the perceptual level
of mathematical signs (i.e., sign-tokens or
concrete objects) to automatically perform
algorithmic computations in order to survive
academically?  Do multiple-choice exams
interfere with the development of the learners’
thinking-writing capacity?  Do teachers make
learners aware that reading, writing, listening,
and speaking are effective means of
objectifying mathematical knowledge
objects?  Do teachers make learners aware
that communicating mathematically is also
constituted by justifying in terms of
explanation, verifications, making valid
arguments, and constructing proofs?

To communicate mathematically in the
classroom, the teacher has: (a) to flexibly
move within and between different semiotic
systems (e.g., ordinary language,
mathematical sub-language, mathematical
notations, diagrams, graphs, gestures, etc.)
(Duval 2006); (b) to refer to mathematical
objects that are other than visible and
concrete (e.g., patterns, variance, and
invariance across concepts) (see for
example, Radford, 2003); (c) to address the
learners in ways that are supposed to be
meaningful to them (see for example,
Ongstad, 2006); and (d) to express
(verbally and nonverbally) the encoding
and decoding of mathematical objects
(Ongstad, 2006).  Thus communicating
mathematically between teacher and

learners also requires the triad referring-
addressing-expressing within and between
several semiotic systems.

Interpreting mathematical signs is, in
essence, a dynamic process of objectification
in which the individual gradually becomes
aware of knowledge objects represented in
verbal, algebraic, visual, and sometimes
imaginary representations (Davis and Hersh,
1981) and these representations have their
own inherent properties.  Becoming aware
of knowledge objects through a variety of
representations is in itself a demanding
intellectual labor because of the
characteristics of different representations.
Skemp (1987), for example, points out
differences between visual and verbal/
algebraic representations: (1) Visual
representations, such as diagrams,
manifest a more individual and analog type
of thinking; in contrast, verbal/algebraic
representations manifest a more socialized
type of thinking.  (2) Visual representations
tend to be integrative or synthetic; in
contrast, verbal/algebraic representations
are analytical and show detail.  (3) Visual
representations tend to be simultaneous; in
contrast, verbal/algebraic representations
tend to be sequential.  (4) Visual
representations tend to be intuitive; in
contrast, verbal/algebraic representations
tend to be logical.  All these tacit
differentiations are part and parcel of the tacit
knowledge underpinning the classroom
mathematical discourse and they may
create difficulties for some learners
(Presmeg, 1997).  Yet another source of
tacit knowledge in the classroom discourse
is the variety of speech genres in
mathematical discourse, for example,
debating, arguing, justifying, and proving
(Seeger, 1998).  For Rotman, persuading,
convincing, showing, and demonstrating
are discursive activities with the purpose
of achieving intersubjective agreement,
generalization, and semiotic objectification.
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This kind of tacit knowledge is not even
remotely considered to be a part of the
institutionalized school curriculum and
many teachers are not even aware of it.
The lack of explicitness of the tacit
knowledge (expected to be understood by
the learners) contributes to their abrupt and
foggy entrance into the territory of the
mathematical world, where those who will
successfully accumulate ‘mathematical
wealth’ are the ones who have the capacity
of making explicit for themselves the tacit
underpinnings of mathematical discourse
and the triadic nature of the process of
conceptualization (interpretation,
objectification, and generalization).

To summarize, the emergence of
mathematical objects and their meanings
are in no way independent from intentional
acts of interpretation and objectification
mediated by reading and writing, speaking
and listening.  These acts are essential in
the gradual mathematical growth of the
mathematical wealth of the learners.
Communicating mathematically in terms of
reading, writing, listening, and debating
should be considered means of
interpretation and objectification.  Hence,
knowledge of semiotics appears to be a
necessary conceptual tool in the classroom,
not only for theoretical and explanatory
purposes but also for pragmatic ones.

Communicating Mathematically and
Mathematical ‘Wealth’

We would like to consider mathematical
wealth as a metaphor to refer to the learner’s
continuous accumulation of mathematical
knowledge as the product of his intellectual
labor in an intra-subjective or inter-subjective
space.  This mathematical wealth is personal,
although socially and culturally constituted,
in addition to continuously being in the
making.

As learners initiate and continue their
journey in a mathematical world (which is
planned by the institutionalized curriculum
and/or by the learners’ own interests), they
continuously invest their existing
mathematical wealth in order to increase
its value.  This investment is a continuous
process of evolution, development, and
transformation of the learner’s referential
relations using signs of iconic, indexical,
and symbolic nature.  Sign-tokens are not
inherently icons, indices, or symbols; they
are so only if interpreted in that way.  The
learner’s interpretation of the referential
relations of signs is manifested in his verbal
and written responses.  Say for example,
that a learner is capable of keeping in
memory the expression “positive times
positive is positive and negative times
negative is positive”(*). What is the
meaning of this expression for a learner at
different phases of his mathematical
journey?  Does it change?  Does it remain
the same?

It could be that he has memorized this
expression as we memorize prayers when
we are little; they just stick in our minds
and we regurgitate them, even if we do not
know what they mean.  It could be that the
learner interprets that expression as
follows: “I remember that with a ‘-’and a ‘-
’ I can make a ‘+’’; and with a ‘+’ and a ‘+’ I
can only make a ‘+’”.  In these cases, the
learner has only an iconic relationship with
the expression (*).  The learner is trying to
make sense by focusing on the physical
resemblances of the sign-tokens.  Would
he be able to ascend from the level of
having an iconic relation with the
expression (*) to the level of having an
indexical relation with it?  If the learner
says, for example, “I know that 2 times 3
is 6 and -2 times -3 is 6”, then the learner
has an iconic-indexical relation with the
expression (*) because he has a particular
case that, in a way, indicates the possibility
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of the generality of this statement.
However, when the learner comes to
transform the above expression into an
expression like “xy>0 only in cases when
x>0 and y>0 or when x<0 and y<0” or to re-
cognize that “-x” could be positive or
negative depending on the value of x; then
the learner has a symbolic relation with the
expression (*).  In the latter, the learner has
come to enrich the meaning of the
expression (*) as he works with variable
quantities in the context of algebra.

In fact, as the learner comes to develop a
symbolic relationship with this expression,
or the expression (*) becomes symbolic for
the learner, he will also come to have an
iconic and iconic-indexical relationship with
it.  This is to say that once a learner has a
symbolic relation with a sign, he would be
able to unfold it into iconic and iconic-
indexical relations whenever necessary.
But the other way around is not necessarily
true.  A learner, who has an iconic or an
iconic-indexical relationship with a sign-
token (in this case the expression (*)) may
not necessarily have a symbolic
relationship with it (i.e., the sign-token does
not yet stand for a knowledge object in the
mind of the learner).  What does this mean
in terms of objects?  A learner who has
constructed either a concrete or a
phenomenological object may very well
have not yet constructed a knowledge
object.  However, if the learner has
constructed a knowledge object, one can
safely infer that he also has constructed
the corresponding concrete and
phenomenological objects (i.e., the learner
could be able to deconstruct the knowledge
object into phenomenological and concrete
objects).

When a learner repeats the expression
“positive times positive is positive and
negative times negative is positive”, it
means that he could have an iconic, an

iconic-indexical, or a symbolic relationship
with the expression.  What is the
relationship that the learner has
constructed?  This is not evident until the
learner has the opportunity to use it in
different contextual situations.  How does
the teacher, who is in charge of guiding
the learner, interpret the kind of relationship
that the learner has with the expression?
The teacher could have a symbolic
relationship with the expression (*) and
think that the learner also has a symbolic
relationship with it.  In addition, if the
teacher considers that any sign-token or
representation is inherently symbolic,
independently of the learner ’s
interpretation, she would firmly believe that
the learner could have only a symbolic
relationship with it.  Henceforth, the teacher
will not change her interpretation of the
learner’s interpretation, and this might
rupture the semantic l ink in the
communication between the teacher and
the learner.  The teacher’s expectations
would run at a level higher than the current
level of the learner’s possibilities.  This
could prompt the teacher to misjudge the
capabilities of the learner and to give up
on the learner instead of creating new
learning situations to induce the
construction of the learner’s symbolic
relationship with sign-tokens (in this case
the expression (*)).  The worst case would
be when the learner stops increasing the
value of his initial mathematical wealth and
soon falls behind others and with feelings
of not having any intellectual capacity for
mathematics.

The teacher needs to understand that the
expression (*) or any other sign could have
iconic, iconic-indexical, or iconic-indexical-
symbolic meanings for the learner at
different points of his mathematical journey.
That is, the teacher should be aware that
what one routinely calls “symbols” are
nothing else than sign-tokens that can be
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interpreted at different levels of
generalization.  The teacher who comes
to understand what is symbolic and for
whom, what is iconic-indexical and for
whom, what is iconic and for whom,
should also come to see her teaching
deeply rooted in her own learning of
mathematics and in her learning of her
students’ learning.

A teacher unaware of hers and the learners’
possible iconic, indexical, and symbolic
relationships with signs has no grounds for
making hypotheses about the learners’
interpretations.  Then, the teacher will only
interpret her own interpretations but not
those of the learners.  That is, the teacher
comes to collapse the three levels of
interpretation (her own interpretation, the
learners’ interpretation, and her
interpretation of the learner’s interpretation)
making it only one muddled level that barely
reflects the cognitive reality of those
involved in the teaching-learning activity.  In
doing so, the teacher loses cognitive
contact with the learner and thus the
opportunity to support his personal
processes of re-organization and
transformation of his prior knowledge.  It is
not surprising, then, that Bauersfeld (1998)
noticed that learners are alone in making
their own interpretations and that there is
a difference between “the matter taught”
and “the matter learned”.  In our framework,
this would translate as the existence of a
difference between the matter interpreted
by the teacher, the matter taught by the
teacher, and the matter interpreted by the
learners.

At any given moment, learners start with a
particular set of mathematical
conceptualizations to be transformed and
re-organized.  This initial set of conceptual
elements, with whatever mathematical
value (iconic, indexical, or symbolic) , is
what we would like to call the initial

mathematical wealth.  This wealth, if
invested in well designed learning
situations using a variety of contexts, will
allow the learner to embed iconic
relationships into iconic- indexical
relationships and to embed iconic-
indexical relationships into symbolic
ones.  By doing so, the learner will come
to construct mathematical patterns (at
different levels of generalization), and
regulated combinations of mathematical
signs according to the structure of the
mathematical sign systems he is working
with at that moment.  For example,
learners’ generalization, in the natural
numbers, that multiplication makes bigger
and division makes smaller, has to be re-
conceptualized or re-organized when they
start working with decimals.  Later on,
multiplication needs to be generalized as
an operation with particular properties.
And even later, division needs to be re-
cognized and re-organized as a particular
case of multiplication.  That is, the learner’s
relationship with multiplication and its
results needs to be transcended and
attention needs to be focused on the
nature of the operation itself, leaving
implicit the indexicality of particular
results as well as the iconicity of the sign-
tokens “times” or “x” (like in 4 times 2 or
4x2) used for multiplication in grade
school.  That is, multiplication, in the long
run, should become a symbolic operation
in the mind of the learner and not only the
mere memorization of multiplication facts
and the multiplication algorithm.

Hence, the nature of the investment of the
learner’s mathematical wealth resides in
his capacity to produce new levels of
interpretations and concomitantly new
objects (concrete, phenomenological, and
knowledge objects) at different levels of
generality (iconic, indexical, or symbolic).
This kind of investment increases the
learner’s mathematical wealth and goes

238



Learning Mathematics: Increasing the Value of Initial Mathematical Wealth

beyond the manipulation of “sign-tokens 3”.
That is, the value of the investment
increases as the learner’s interpretation of
signs ascends from iconic, to iconic-
indexical, to iconic-indexical-symbolic
along his recursive and continuous
personal processes of interpretation,
transformation, and re-organization.
Moreover, what becomes symbolic at a
particular point in time in the learner’s
conceptual evolution could become the
iconic or iconic-indexical root of a new
symbolic sign at a higher level of
interpretation.  For example, our middle
school knowledge of the real numbers with
the operations of addition and multiplication
becomes the root for interpreting, later on,
the field structure of real numbers (i.e., the
set of real numbers with the operations of
addition and multiplication constitutes an
additive group and a multiplicative group
respectively and also the operation of
multiplication distributives over the
operation of addition).

In summary, learners who become
mathematically wealthy are those who,
along the way, are able to interpret
knowledge objects from concrete sign-
tokens and, in the process, are able to
transcend their phenomenological aspects
(i.e., iconic-indexical) and ascend to
symbolic relationships with them through
continuous acts of interpretation,
objectification, and generalization.  No
matter through what lens one sees teaching
and learning (i.e., learners discover,
construct, or apprehend mathematical
concepts), this triadic intellectual process
(interpretation-objectification-generalization)
is in reality a continuous recursive
synchronic-diachronic process in their
intellectual lives.  This process is not only

      It  is  worthwhile  to  notice  that  the  expression  manipulation of symbols becomes  an oxymoron in Peirce’s theory

of signs and it could be replaced by the expression manipulation of sign-tokens.

2

synchronic.  It would be impossible for the
learner to appreciate, all at once, current
and potential meanings embedded in
contextual interpretations of mathematical
signs.  Only when the learners have
traveled the mathematical landscape for
some time, they are able to “see” deeper
meanings in mathematical signs as they
interpret them in new contexts and in new
relationships with other signs.  Hence, the
process is also diachronic.  In the
diachronicity of the process, the learner
comes to understand the meaning potential
of different signs.

Continuity and recurrence (i.e., going back
in thought to consider something again
under a new light) is the essence of this
synchronic-diachronic process.  Continuity
and recursion allow learners (1) to carry
on with their personal histories of
conceptual development and evolution and
(2) to transcend conceptual experiences
in particular contexts through the
observation of invariance and regularities
as they see those experiences from new
perspectives.  That is, the sequential
nature of the synchronic-diachronic
process upholds all personal acts of
interpretation, objectif ication, and
generalization as well as of self-
persuasion.  Essentially, this is a mediated
and a dialectical process between learner’s
knowing and knowledge in the permanent
presence of the continuous flow of time,
not only synchronically (in the short lived
present) but also diachronically (across
past, present, and future).  As learners
travel through the world of school
mathematics, they construct and interpret
for themselves a network of mathematical
conceptualizations that is continuously re-
organized through mathematical discourse
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(reading, writing, speaking, and listening)
and de-contextualized through abstraction
and generalization.  As the learners’ networks
of mathematical conceptualizations become
increasingly re-organized and transformed
over time, the earlier value of their
mathematical wealth also increases.

Where do Learners Build up and
Consolidate their Mathematical

Wealth?

As learners travel through a particular
territory of the mathematical world (e.g., the
institutionalized school curriculum) they
become mathematically wealthier because
they become better acquainted with the ins
and outs of the territory (i.e., they are able
to produce symbolic interpretations of
signs, or they relate to signs iconically and
indexically but in a systematic manner).
Others have a bird’s eye view of the territory
(i.e., they are able to produce only isolated
iconic, or indexical interpretations of signs
or they relate to signs iconically or
indexically but in an unsystematic manner)
and soon forget they have seen the
landscape because they have made no
generalizations.  Still others are able to
finish their journey traveling on automatic
mode (i.e., using calculators and
memorized manipulations) to establish their
own peculiar relationships with the
mathematical code or mathematical
semiotic systems.  Henceforth, they are
able to produce, at best, only iconic
interpretations from signs that soon will be
forgotten.

The learners’ mathematical wealth is built
in a socio-cognitive classroom environment
grounded on collective mathematical
discourse as opposed to the unidirectional
discourse from the teacher to the students.
The quality of this discourse and the
teacher’s focus of attention on the learners’

mathematical arguments influence the
ways in which learners invest their
mathematical wealth and how they
become mathematically wealthier.  It is well
known that teachers, who are in charge of
directing the classroom discourse, guide
their practices according to conscious or
unconscious theoretical perspectives on
mathematics and the teaching of
mathematics and they focus their attention
on different aspects of classroom
discourse.  Sierpinska (1998) delineates
the theoretical perspectives of teachers
within three ample frameworks:
constructivist, socio-cultural, and
interactionist theories.  Constructivist
perspectives focus primarily on the
learners’ actions and speech while the
actions and speech of the teacher are seen
as secondary; that is, the constructivist
teacher focuses essentially on the learners
and their mathematics.  Socio-cultural
(i,e.,Vygotskian) perspectives focus on the
social and historical character of human
experience, the importance of intellectual
labor, the mediating role of signs as mental
tools, and the role of writing in the individual’s
intellectual development; that is, the socio-
cultural teacher focuses essentially on
culture and mediated socio-cognitive
relations.  Interactionist perspectives focus
on language as a social practice; that is, the
interactionist teacher focuses essentially on
discourse and intersubjectivity.  The
behaviorist perspective could be added to
those emphasized by Sierpinska.  The
behaviorist teacher focuses essentially on
the learners’ performance and pays little
attention, if any, to the learners’ ways of
thinking.  Finally, eclectic teachers seem to
intertwine one or more theoretical
frameworks according to the needs of the
learners and their personal goals as
teachers.

In any classroom, one needs to be cautions
about what could be considered successful
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classroom communication.  Successful
classroom discourse may not be an
indication of successful mathematical
communication.  Steinbring et al. (1998)
contend that learners may be successful
in learning only the rituals of interaction with
their teachers or the routine and stereotyped
frames of communication (like the well-known
initiation-response-evaluation and funneling
patterns).  This kind of communication, they
argue, leaves the learners speechless
mathematically although keeping the
appearance of an exchange of mathematical
ideas.  Brousseau (1997), and Steinbring et
al. (1988), among others, present us with
classical examples in which teachers,
consciously or unconsciously, hurry up or
misguide learners’ processes of
interpretation.  Thus, communicating
mathematically is more than simple ritualistic
modes of speaking or the manipulation of
sign-tokens; it is based on a progressive
folding of meaningful interpretations passing
from iconic, to iconic-indexical, to iconic-
indexical-symbolic, and vice versa the
unfolding of these relations in the opposite
direction.  Or as Deacon (1997) puts it:
“symbolic relationships are composed of
indexical relationships between sets of
indices, and indexical relationships are
composed of iconic relationships between
sets of icons” (p. 75).  That is, more complex
forms of objectification emerge from simpler
forms (i.e., simpler forms are transcended but
remain embedded in more complex ones).

This is to say that the learner’s process of
mathematical interpretation is mediated by
mathematical sign systems (icons, indexes,
or symbols and their logical and operational
relations) to constitute networks of
conceptualizations and strategies for
meaning-making.  Communicating
mathematically is, in fact, a continuous
semiotic process of interpretation,
objectification, and generalization.  The
construction of generalizations takes the

learner from simple iconic relations, to
indexical relations, and then to symbolic
relation (i.e., folding of iconic relations into
indexical ones, and then embedding
indexical relations into symbolic ones) in
order to make new interpretations and new
objectifications that produce new
generalizations.  Moreover, deconstructing
generalizations takes the learner in the
opposite direction (i.e., unfolding of
symbolic relations into iconic-indexical
ones, and unfolding iconic-indexical
relations into iconic ones) in order to
exemplify, in particular cases, the skeletal
invariance arrived at in generalization. Both
directions are necessary because,
together, they manifest not only the
recursive and progressive constructive
power of individual minds but also they
manifest the human and socio-cultural
roots of mathematical thinking.

Concluding Remarks

Using a Peircean perspective on semiotics,
this paper argues the notion of
mathematical wealth.  The initial cognitive
mathematical wealth of any learner begins
early in life.  In his years of schooling and
with the guidance of teachers, this initial
wealth is progressively invested and its
value gradually increased.  The process
of investment is, in essence, a mediated-
dialectical process of decoding a variety
of semiotic systems and, conversely, the
encoding of thoughts and actions in those
semiotic systems that intervene.  Such
systems could be of socio-cultural,
pedagogical, or mathematical nature.

For mathematical wealth to increase in
value in the process of investment, the
learner has to decode not only the
mathematical code but also the tacit code
of socio-cognitive rules of engagement in
the classroom.  A priori and implicitly, he is
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expected to understand, that reading and
writing, constructing and interpreting
mathematical arguments, listening and
speaking, and justifying in the form of
explanation, verification, and proof are
necessary activities for the learning of
mathematics.  He also has to understand
that these activities can effectively mediate
the appropriation and construction of
mathematical meanings from mathematical
signs and the encoding of his own
interpretations and meaning-making
processes back into mathematical signs.

The paper also argues three levels of
interpretation in the classroom: (a) the
learner’s level of mathematical interpretation;
(b) the teacher’s own level of mathematical
interpretation; and (c) the teacher’s level of
interpretation of the learners’ mathematical
interpretations.  It is also argued that
mathematical meanings are not only inherent
in mathematical signs but also inherent in the
learner’s cognitive relationship with those
signs.  Such relationships could be of an
iconic, indexical, or symbolic nature.  These
relationships are not necessarily

disconnected since an iconic relationship
could ascend and become an indexical
relationship, and the latter could ascend
and become a symbolic relationship.  Vice
versa, a symbolic relationship could be
unfolded into an indexical relationship, and
the indexical relationship could be unfolded
into an iconic relationship.  In fact, when
learners manipulate sign-tokens, it is
sometimes necessary, for efficiency, to
keep symbolic relations implicit in one’s
mind.  Keeping the ascending and
descending directions of relationships with
signs and sign systems allow learners to
move from the particular to the general and
from the general to the particular.  The
learners’ relationships with mathematical
signs and sign systems are the result of
mediated-dialectical processes between
the learner’s knowing and knowledge in the
synchronic and diachronic triadic process
of interpretation, objectification, and
generalization.  The reader is referred to
Radford (2003) and Sáenz-Ludlow (2003,
2004, and 2006) for other instances of
learners’ processes of interpretation,
objectification, and generalization.
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