Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 6 No. 3 (2003): Noviembre

THE TEACHING OF INEQUALITIES FROM THE POINT OF VIEW OF APOS THEORY

Submitted
December 22, 2024
Published
2003-11-30

Abstract

Based on the theoretical framework APOS I show a mental constructions - scheme that undergraduate students may to present when trying to understand the inequality subject. The inequalities are present in a lot of areas like math, engineer and economy, but only part of students and of teachers have been able to fully understand such concept. The treatment given to this matter has not proven effective. Its study involves many notions that must be coordinated coherently like: number real framework, factorization, functions, function roots, 1-1 real correspondence with coordinate line, equations, graphs analysis of function, implication and equivalence relations as well as others. With basis in this scheme presented here it will be possible to elaborate a methodology that will improve the teaching and learning of inequalities.

References

  1. Albert, A., Arrieta, J. y Farfán, R. (2001). Un acercamiento gráfico a la resolución de desigualdades. México: Grupo Editorial Iberoamérica.
  2. Alvarenga, K. B. (1999). Inequações- uma pesquisa de doutorado em andamento. Revista da III Jornada de Produção Científica das Universidades Católicas do Centro-Oeste. Vol II, Goiânia, setembro, 77-83.
  3. Asiala, M., Brown A., Devries, D.J., Dubinsky E., Mathews D. & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. CBMS Issues in Mathematical Education 6, 1-32.
  4. Boero, P. (1998). Inéquations: aspects didactiques, épistémologiques et cognitifis. In: Jean-Philippe & Maryse Maurel, Actes des Séminaires-SFIDA X, VOL. III, Genova, l’IREM de Nice, X 3-7.
  5. Breindenbach, D., Dubinsky, E., Hawks.J.& Nichols D. (1992). Development of the process of function. Educational Studies in Mathematics, vol. 23, 247-285.
  6. Baker, B., Cooley, L. & Trigueros, M. (2000). The schema Triad – A calculus example. Journal for Research in Mathematics Education, November.
  7. Clark J., Cordero F., Cotrill J., Bronislaw C., DeVries D. J., St. John D., Tolias G. & Vidakovic D. (1997). Constructing a Schema: The Case of the Chain Rule.
  8. Journal of Mathematical Behavior, 14 (4).
  9. Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, vol. 8, No.3, 24-41.
  10. Dubinsky, E. (1995). “A programming Language for Learning mathematics”. Communication on Pure and Applied Mathematics, vol. 48, 1-25.
  11. DeVries, D. Publicación electrónica. RUMEC/APOS theory glossary. Obtenido en http://www.cs.gsu.edu/~rumec/Papers/Glossary.html en junio de 2001.
  12. Piaget, J. (1972). The principles of Genetic Epistemology (W. Mays trans.) London: Routledge & Kegan Paul (original published in 1970).
  13. all, D. O & Vinner, S. (1981). Concept Image and Concept definition in Mathematics, with particular reference to limits and continuity. Educational Studies in Mathematics 12, 151-169.
  14. Trigueros, M. & Ursini, S. (1997). Understanding of different uses of variable: A study with starting college students. Proceedings of the XXI PME International Conference, Finland.
  15. Vergnaud G. (1982). Cognitive and Developmental Psychology and Research in Mathematics Education: some theoretical and methodological issues. For the Learning of Mathematics 3, 2, november, 31-41.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.