Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 26 No. 1 (2023): Marzo

INTERDISCIPLINARY MUSIC -MATHEMATICS TEACHING : THE GUITAR AND ITS LEADING ROLE IN THE HISTORICAL DEVELOPMENT OF WESTERN MUSIC

DOI
https://doi.org/10.12802/relime.23.2611
Submitted
October 5, 2023
Published
2023-08-12

Abstract

Equal temperament is the standard tuning for instruments in the West and has shaped our current way of thinking about music. The purpose of this research is to explore how the knowledge put to use and the meanings associated with the historical emergence of equal temperament, in instruments that preceded the guitar, can contribute to an interdisciplinary approach to learning  mathematics and music. For this, an interpretative analysis of the content of the book Mersenne’s Universal Harmony of 1637 was  carried out, and the process of genesis and development in the 16th century of the knowledge present in this book was studied. The results reveal that it is possible to rethink the teaching of some geometric contents at school level, such as Euclid’s theorem and geometric progression, based on the problem of the proportional division of the guitar neck. We also conclude that the notion of self-similarity would allow the generation of interdisciplinary didactic proposals that foster a transversal link between Mathematics and Music.

References

  1. Barbour, J. M. (2004). Tuning and temperament: a historical sur vey. Michigan State College Press (año de publicación del libro original; 1951). https://archive.org/details/tuningtemperamen00barb/page/n13/mode/2up
  2. Benson, D. (2006). Music: a mathematical offering. Cambridge University Press. https://ds.amu.edu.et/xmlui/bitstream/handle/123456789/14630Music-%20mathematics%20-%20531%20pages.pdf?sequence=1&isAllowed=y
  3. Bermudo, J. (1555). Declaración de instrumentos musicales. Taller de Juan de León.
  4. Bobillier, E. (1827). Principes d’algèbre. Impr. de F. Gauthier (Lons-le-Saunier).
  5. Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/qrj0902027
  6. Cantoral, R. (2013). Teorí a socioepistemológica de la Matemá tica Educativa. Estudios sobre construcción social del conocimiento. Gedisa.
  7. Cantoral, R., Montiel, G., y Reyes-Gasperini, D. (2015). El programa socioepistemológico de investigación en Matemática Educativa: el caso de Latinoamérica. Revista Latinoamericana de Investigación en Matemática Educativa, 18(1), 5-17. http://dx.doi.org/10.12802/relime.13.1810
  8. Chao-Fernández, R., Mato-Vázquez, D., y Chao-Fernández, A. (2019). Fractions and pythagorean tuning. An interdisciplinary study in secondary education. Mathematics, 7(12), 1227, 1-13. https://doi.org/10.3390/math7121227
  9. Chi, N. P. (2021). Teaching Mathematics through interdisciplinary projects: A case study of Vietnam. International Journal of Education and Practice, 9(4), 656-669. https://doi.org/10.18488/journal.61.2021.94.656.669
  10. Conde Solano, L. A., Figueras Morut de Montpellier, O., Pluvinage, F. C. B. y Liern Carrión, V. (2011).El sonido de las fracciones: una propuesta interdisciplinaria de enseñanza, SUMA 68, 109-116.https://www.researchgate.net/profile/Vicente-Liern/publication/359337787_El_sonido_
  11. d e _ l a s _ f r a c c io n e s _ u n a _ p r o p u e s t a _ i n t e r d i s c i pl i n a r i a _ d e _ e n s e n a n z a / l i n k s /6235aa7d72d413197a332d0a/El-sonido-de-las-fracciones-una-propuesta-interdisciplinaria-de-ensenanza.pdf
  12. Doig, B. y Williams, J. (2019). Conclusion to interdisciplinary Mathematics Education. En B. Doig, J. Williams, D. Swanson, R. Borromeo Ferri y P. Drake (Eds), Interdisciplinary Mathematics Education. ICME-13 Monographs (pp. 299-302). https://doi.org/10.1007/978-3-030-11066-6
  13. Drisko, J. W., y Maschi, T. (2016). Content analysis. Pocket Guide to Social Work Research Methods. Oxford University Press.
  14. Espinoza, L., Redmond, J., Palacios Torres, P. C., & Cortez Aguilera, I. (2020). Numerus surdus y armonía musical. Sobre el temperamento igual y el fin del reinado pitagórico de los números. Revista de humanidades de Valparaíso, (16), 137-167. http://dx.doi.org/10.22370/rhv2020iss16pp137-167
  15. Espinoza, L., Vergara, A., & Valenzuela, D. (2018). Geometría en la práctica cotidiana: la medición de distancias inaccesibles en una obra del siglo XVI. Revista latinoamericana de investigación en matemática educativa, 21(3), 247-274. https://doi.org/10.12802/relime.18.2131
  16. Faber Stapulensis, J. (1496). Arithmetica et musica. Joannes Higmanus et Volgangus Hopilius.
  17. Floris Cohen, H. (1987) Simon Stevin’s equal division of the octave. Annals of Science, 44(5),471-488. https://doi.org/10.1080/00033798700200311
  18. Fogliani, L. (1529). Musica theorica Ludovici Foliani mutinensis. Jo. Antonium et fratres de Sabio.
  19. Frisius, G. (1585). Arithmeticae practicae methodus facilis. Apud Ioan Tornaesium et Gul. Gazeium. (Obra original publicada en 1556).
  20. García-Pérez, A. S. (2014). El temperamento igual en los instrumentos de cuerda con trastes. En A. García-Pérez y P. Otaola González (coords.), Francisco de Salinas. Música, teorí a y matemática en el Renacimiento (pp. 61-89). Ediciones Universidad de Salamanca.
  21. García-Pérez, A. S. (2003). El número sonoro: la matemática en las teorías armónica de Salinas y Zarlino. Caja Duero.
  22. Hartzler, D. S. (2000). A meta-analysis of studies conducted on integrated curriculum programs and their effects on student achievement. Doctoral dissertation. Indiana University. https://www.proquest.com/docview/304624583?pq-origsite=gscholar&fromopenview=true
  23. Homes, A., Kaneva, D., Swanson, D. y Williams, J. (2013). Re-envisioning STEM education: curriculum, assessment and integrated, interdisciplinary studies. The Universtity of Manchester. https://royalsociety.org/~/media/education/policy/vision/reports/ev-2-vision-research-report-20140624.pdf
  24. Mersenne, M. (1637). Harmonie universelle, Tomo 2. Pierre Ballard.
  25. Nisbet, S. (1991). Mathematics and Music. The Australian Mathematics Teacher, 47(4), 4-8. https://search.informit.org/doi/10.3316/aeipt.56500
  26. Oliveira, M. P. de (2023). A integração entre a Música e a Matemática: uma revisão sistemática de literatura. Revista de Ensino de Ciências e Matemática, 14(1), 1–25. https://doi.org/10.26843/rencima.v14n1a08
  27. Pareyon, G. (2011). On musical self-similarity. Intersemiosis as synecdoche and analogy. En E. Tarasti (Ed.), Acta Semiotica Fennica XXXIX: Approaches to Musical Semiotics Series 13 (pp. 205-455). The International Semiotics Institute. https://helda.helsinki.fi/server/api/core/bitstreams/334af43a-1ca2-4dd3-ac17-d3df3627b160/content
  28. Pareyon, G., Almada, C., Mathias, C., Saraiva, C., Moreira, D., Carvalho, H., Pitombeira, L., Gentil-Nunes, P., Mesz, B., Amster, P. y Riera, P. (2022). Music and Mathematics in Latin America. Major developments in the last 25 years. Brazilian Journal of Music and Mathematics, 6(1), 12–47. https://doi.org/10.46926/musmat.2022v6n1.12-47
  29. Prada Dussán, M. (2009). Crí tica moral de Francis Bacon a la Filosofí a. Folios: Revista de la Facultad de Humanidades 30, 99-114. https://doi.org/10.17227/01234870.30folios99.114
  30. Rasch, R. (2008). Simon Stevin and the calculation of equal temperament. En P. Vendrix (Ed.), Music and Mathematics (pp. 253-320). Brepols Publishers. https://doi.org/10.1484/M.EM-EB.3.3286
  31. Salinas, F. (1577). De música libri septem. Mathias Gastius.
  32. Simson, R. (1774). Los seis primeros libros y el undécimo, y duodécimo de los Elementos de Euclides. D. Joachin Ibarra, Impresor de Cámara de S.M.
  33. Stevin, S. (1585). L´Arithmétique. A leyde: L´Imprimerie de Christophle Plantin.
  34. Trinick, R. Ledger, G. Major. K. y Perger, P. (2016). More than counting beats: connecting Music and Mathematics in the primary classroom. International Journal for Mathematics Teaching and Learning, 17(3). https://www.cimt.org.uk/ijmtl/index.php/IJMTL/article/view/32/20
  35. Tytler, R., Williams, G., Hobbs, L. y Anderson, J. (2019). Challenges and opportunities for a STEM interdisciplinary agenda. En B. Doig, J. Williams, D. Swanson, R. Borromeo-Ferri y P. Drake (eds), Interdisciplinary Mathematics Education. ICME-13 Monographs (pp. 51-81). Springer. https://doi.org/10.1007/978-3-030-11066-6_5
  36. Van Wymeersch, B. (2008). Qu’entend-on par «nombre sourd»? En P. Vendrix (Ed.), Music and Mathematics (pp. 97-110). Brepols Publishers. https://doi.org/10.1484/m.em-eb.3.3281
  37. Venegas-Thayer, M. A. (2019). Integration from a commognitive perspective:an experience with Mathematics and Music students. En B. Doig, J. Williams, D. Swanson, R. Borromeo-Ferri y P. Drake (Eds.), Interdisciplinary Mathematics Education. ICME-13 Monographs, (pp. 35–49).
  38. Springer. https://doi.org/10.1007/978-3-030-11066-6_4
  39. Virdung, S. (1993). A treatise on musical instruments. University of Cambridge.
  40. Walsh, T. P. (2010). Mathematics and Music. In L. Chen-Hafteck y J. Chen (Eds.), Educating the creative mind: developing capacities for the future. An International Conference on Arts-Based Education (pp. 90-92). Kean University. https://www.researchgate.net/profile/Jennifer-Chen-16/publication/271206509_Conference_Proceedings_of_the_Educating_the_Creative_Mind_Conference_2010/links/5649ee0108ae127ff9865ffa/Conference-Proceedings-of-the-Educating-the-Creative-Mind-Conference-2010.pdf#page=94
  41. Wright, D. (2009). Mathematics and Music. American Mathematical Society. https://www.math.wustl.edu/~wright/Math109/00Book.pdf
  42. Xenakis, I. (1992). Formalized Music. Thought and Mathematics in Music. Pendragon Press.
  43. Zarlino, G. (1558). Istitutioni harmoniche. Francesco dei Francheschi Senese.
  44. Zarlino, G. (1571). Dimonstrationi harmoniche. Francesco dei Francheschi Senese.
  45. Zarlino, G. (1588). Sopplimenti musicali. Francesco dei Francheschi Senese.

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.