Artículos
Vol. 10 Núm. 3 (2007): Noviembre
INTUICIÓN, RIGOR Y RESOLUCIÓN DE PROBLEMAS DE OPTIMIZACIÓN
Pontificia Universidad Católica del Perú, Perú.
-
Enviado
-
julio 10, 2024
-
Publicado
-
2007-09-14
Resumen
En este artículo analizamos cualitativa y cuantitativamente las soluciones de 38 estudiantes de ingeniería a dos problemas de optimización. Ocupamos un protocolo ad hoc y las herramientas teóricas configuración epistémica y configuración cognitiva, propuestas por el enfoque ontosemiótico del conocimiento matemático. Los resultados indican que hay deficiencias en el uso de lenguaje formalizado, procedimientos, proposiciones y argumentos, así como una inadecuada interacción entre intuición, formalización y rigor.
Referencias
- Cohn, R. (1995), Entrenando la intuición. Siglo XXI. Perspectivas de la Educación desde América Latina, 2.
- D'Amore, B. y Godino, J. D. (2007). El enfoque ontosemiótico como un desarrollo de la teoría antropológica en didáctica de la matemática. Revista Latinoamericana de Investigación en Matemática Educativa 10 (2), 191-218.
- Dubinsky, E. (2000). Meaning and formalism in mathematics. International Journal of Computers for Mathematical Learning 5 (3), 211-240.
- Fischbein, E. (1994). Intuition in science and mathematics. Holland: Reidel Publishing Company.
- Font, V. y Godino, J. D. (2006). La noción de configuración epistémica como herramienta de análisis de textos matemáticos: su uso en la formación de profesores. Educaço Matematica Pesquisa 8 (1), 67-98.
- Font, V.; Contreras, A. y Rubio, N. (2007). Procesos en matemáticas. Una mirada desde un enfoque ontosemiótico. Conferencia especial en la XXI Reunión Latinoamericana de Matemática Educativa (RELME). Maracaibo, Venezuela.
- Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques 22 (2-3), 237-284.
- Godino, J. D.; Font, V. y Wilhelmi, M. R. (2006). Análisis ontosemiótico de una lección sobre la suma y la resta. Revista Latinoamericana de Investigación en Matemática Educativa (Número Especial), 131-155.
- Godino, J. D.; Font, V.; Contreras, A. y Wilhelmi, M.R. (2006). Una visión de la didáctica francesa desde el enfoque ontosemiótico de la cognición e instrucción matemática. Revista Latinoamericana de Investigación en Matemática Educativa 9 (1), 117-150.
- Godino, J. D.; Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education, ZDM. The International Journal on Mathematics Education 39 (1-2), 127-135.
- Gusmao, T. R. S. (2006). Los procesos metacognitivos en la comprensión de las prácticas de los estudiantes cuando resuelven problemas matemáticos: una perspectiva ontosemiótica. Tesis de doctorado, Universidad de Santiago de Compostela.
- Malaspina, U. (2005). Motivation and development of mathematical thinking using optimization problems. In A. Gagatsis (Ed.), Proceedings of the 4th Mediterranean Conference on Mathematics Education (Vol. II, pp 491-500), Palermo, Italy.
- Mosterin, J. (1980). Teoría axiomática de conjuntos. Barcelona, España: Ariel.
- Ramos, A. B. y Font, V. (2006). Contesto e contestualizzazione nell'insegnamento e nell'apprendimento della matematica. Una prospettiva ontosemiotica. La Matematica e la Sua Sidattica 20 (4), 535-556.
- Roldán, R. y Cribeiro, J. (2001) Entrenando la intuición en la matemática superior. Revista Ciencias Matemáticas 19 (2), 133-141.
- Schubring, G. (2005). Conflicts between generalization, rigor and intuition. Number concepts underlying the development of analysis in 17th-19th century France and Germany. New York, USA: Springer.