Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 18 No. 1 (2015): Marzo

A FUNCTIONAL GRAPHIC APPROACH TO INEQUATIONS

DOI
https://doi.org/10.12802/relime.13.1814
Submitted
July 2, 2023
Published
2015-03-31

Abstract

We present some results from a research study in which five mathematics teachers worked on a functional graphic approach to solve inequalities. We developed activities using algebraic, graphic and natural language registers (Duval, 1995, 2000) in order to engage teachers in the solution treatment within different registers and in conversions between them so they might become aware of the errors they make when using algebraic methods in the light of comparisons with graphical methods. Analyses of teachers’ protocols were undertaken to identify formal, intuitive and algorithmic aspects (Fischbein, 1993). Our findings showed that teachers did not search for mathematical reasons as why their algebraic and graphical strategies resulted in different solutions, suggesting that they had not fully appropriated the formal aspects of the algebraic solving methods they normally use to solve inequations.

References

  1. Bachelard, G. (1996). A formação do espírito científico (1a ed.). (E. Abreu, Trad.). Rio de Janeiro, Brasil: Contraponto. (Reimpreso de La Formation de l’esprit scientifique: contribution à une psychanalyse de la connaissance, 1938, Paris, França: Libraine Philosophique J. Vrin)
  2. Bazzini, L. & Tsamir, P. (2003). Connections between theory and research findings: the case of inequalities. In M. A. Mariotti (Ed.), Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education (Vol. 10, pp. 1-3). Bellaria, Italia: ERME.
  3. Borello, M. y Lezama, J. (2011). Hacia una resignificacion de las desigualdades e inequaciones a partir de las prácticas del profesor. En P. Lestón (Ed.), Acta Latinoamericana de Matemática Educativa (Vol. 24, pp. 921-929). México, DF: RELME.
  4. De Souza, V. H. (2008). O uso de vários registros na resolução de inequações - uma abordagem funcional gráfica (Tese de Doutorado inédita). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.
  5. De Souza, V. H. & Campos, T. M. (2005). Sobre a resolução da inequacao x^2 < 25. IX Encontro Brasileiro de Estudantes de Pós-Graduação em Educação Matemática (Vol. 1, p. 40). São Paulo, Brazil: FEUSP.
  6. Duval, R. (2000). Basic issues for research in Mathematics Education. In M. J. Hoines, & A. B. Fuglestad (Eds.), Proceedings of the 24th Conference fo the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 55-69). Hiroshima, Japan: PME.
  7. Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Neuchâtel, Suisse: Peter Lang.
  8. Fischbein, E. (1993). The interaction between the formal, the algorithmic and the intuitive components in a mathematical activity. In R. Biehler, R. W. Scholz, R. Strässer, B. Winkelmann (Eds.), Didactics of Mathematics as a scientific discipline (pp. 231-240). Dordrecht, HO: Kluwer.
  9. Kieran, C. (2004). The equation/inequality connection in constructing meaning for inequality situations. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 143-147).
  10. Bergen, Norway: PME.
  11. Radford, L. (2004). Syntax and meaning. In M. J. Hoines, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 161-166). Bergen, Norway: PME.
  12. Sackur, C. (2004). Problems related to the use of graphs in solving inequalities. In M. J. Hoines, & A. B. Fuglestad (Ed.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 148-152). Bergen, Norway: PME.
  13. Tsamir, P. & Bazzini, L. (2001). Can x=3 be the solution of an inequality? A study of Italian and Israeli students. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 303-310).
  14. Utrecht, Holland: PME.
  15. Tsamir, P. & Bazzini, L. (2002). Student’s algorithmic, formal and intuitive knowledge: the case of inequalities. In I. Vakalis, D. H. Hallett, D. Quinney, C. Kourouniotis, & C. Tzanakis (Eds.), Proceedings of the Second International Conference on the Teaching of Mathematics. Crete,
  16. Greece: ICTM. Recuperado de http://www.math.uoc.gr/~ictm2/Proceedings/pap511.pdf
  17. Tsamir, P., Almog, N. & Tirosh, D. (1998). Students’ solution of inequalities. In A. Olivier and K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Groupnd Conference of the International Groupnd for the Psychology of Mathematics Education (Vol. 4, pp. 129-136). Stellenbosch, South Africa: PME.

Downloads

Download data is not yet available.

Similar Articles

<< < 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.