Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 15 No. 1 (2012): Marzo

KNOWLEDGE OF FUTURE TEACHERS IN RELATION TO THE IDEA OF FAIR GAMES

Submitted
July 14, 2023
Published
2012-03-01

Abstract

In this paper we assess pre-service primary school teachers’ knowledge in relation to fair games. Common knowledge of content is assessed through the responses given by 167 preservice primary school teachers to two open-problems. In addition, two components of didactic knowledge are inferred trough the participants analyses, when working in small groups: (a) Specialized knowledge of content is assessed from their analyses of the tasks’ mathematical content; and (b) knowledge of content and students is assessed from their assessment of responses provided by primary school students. Results suggest the need to reinforce the training of pre-service teachers both in the mathematical and the didactic knowledge.

References

  1. Azcárate, P. (1995). El conocimiento profesional de los profesores sobre las nociones de aleatoriedad y probabilidad. Su estudio en el caso de la educación primaria. Tesis de doctorado no publicada, Universidad de Cádiz, Cádiz, España.
  2. Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of Research on Teaching (pp. 433 - 456). Washington, DC: American Educational Research Association.
  3. Batanero, C. (2005). Significados de la probabilidad en la educación secundaria. Revista Latinoamericana de Investigación en Matemática Educativa 8 (3), 247 - 263.
  4. Batanero, C., Arteaga, P., Ruiz, B., & Roa, R. (2010). Assessing pre-service teachers conceptions of randomness through project work. In C. Reading (Ed.), Proceedings of the 8 th International Conference on Teaching Statistics. Lubjana: International Association for Statistical Education.
  5. Batanero, C., Burrill, G., & Reading, C. (Eds.) (2011). Teaching statistics in school mathematics. Challenges for teaching and teacher education. A joint ICMI and IASE study. New York: Springer.
  6. Batanero, C., Godino, J. D., & Cañizares, M. J. (2005). Simulation as a tool to train Pre-service school teachers. In J. Addler (Ed.), Proceedings of ICMI First African Regional Conference [CD ROM]. Johannesburgo: International Commission on Mathematical Instruction.
  7. Cañizares, M. J., Batanero, C., Serrano, L., & Ortiz, J. J. (1999). Comprensión de la idea de juego equitativo en los niños. Números 37, 37- 56.
  8. Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics 15 (1), 1 - 24. Doi: 10.1007/BF00380436
  9. Green, D. R. (1983). A survey of probabi/itic concepts in 3000 pupils aged 11-16 years. In D. R.
  10. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the 1st International Conference on Teaching Statistics (Vol. 2, pp. 766- 783). Sheffield, Reino Unido: Universidad de Sheffield.
  11. Chick, H. L., & Pierce, R. U. (2008). Teaching statistics at the primary school level: beliefs, affordances, and pedagogical content knowledge. In C. Batanero, G. Burrill, C. Reading y A. Rossman, Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Proceedings of the ICMI Study 18 and 2008 IASE Round Table Conference. Monterrey: ICMI and IASE.
  12. Godino, J. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas. UNIÓN 20, 13- 31.
  13. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education 39(4), 372- 400.
  14. Jones, G. (2005) (Ed.). Exploring probability in school: Challenges for teaching and learning. New York: Springer.
  15. Jones, G., Langrall, C. & Mooney, E. (2007). Research in probability: responding to classroom realities. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 909 - 956). Greenwich, CT: Information Age Publishing & NCTM.
  16. Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics 23(6), 557- 568.
  17. Lidster, S. T., Pereira-Mendoza, L., Watson, J. M., & Collis, K .F. (1995). What is fair for grade 6? Trabajo presentado en la Annual Conference of the Australian Association for Research in Education, Hobart, Tasmania.
  18. Lidster, S. T., Watson, J. M., Collis, K. F., & Pereira-Mendoza, L. (1996). The relationship of the concept of fair to the construction of probabilistic understanding. In P. C. Clarkson (Ed.), Technology in Mathematics Education, Proceedings of the 19 th Annual Conference of the Mathematics Education Research Group of Australasia, Melbourne (pp. 352- 359). Sydney: MERGA.
  19. Llinares S., & Krainer K. (2006). Mathematics (student) teachers and teacher educators as learners. In A. Gutierrez & P. Boero (Eds.), Handbook of Research on the Psychology of Mathematics Education (pp. 429 - 459). Rotherdam/Taipei: Sense Publichers.
  20. Lopes, C. (2006). Stochastics and the professional knowledge of teachers. In A. Rossman y B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM].Salvador (Bahía), Brasil: International Statistical Institute.
  21. MEC (2006). Real Decreto 1513/2006, de 7 de diciembre, por el que se establecen las enseñanzas mínimas de la Educación Primaria. Madrid: Boletín Oficial del Estado, nº 293. MEC (2007). Resolución de 17 de diciembre de 2007, de la Secretaría de Estado de Universidades e Investigación, por la que se publica el Acuerdo de Consejo de Ministros de 14 de diciembre de 2007, por el que se establecen las condiciones a las que deberán adecuarse los planes de estudios conducentes a la obtención de títulos que habiliten para el ejercicio de la profesión regulada de Maestro en Educación Primaria. Madrid: Boletín Oficial del Estado, nº 305. N. C. T. M. (2000). Principles and standards for school mathematics. Reston: VA, NCTM.
  22. Ortiz, J. J., Mohamed, N., Batanero, C.; Serrano, L., y Rodríguez, J. (2006). Comparación de probabilidades en profesores en formación. En P. Bolea, M. J. Gonzáles y M. Moreno (Eds,), Actas del X Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 267 - 276). Huesca, España: SEIEM.
  23. Piaget, J., e Inhelder, B. (1951). La genése de l’idée de hasard chez l’enfant. Paris: Presses Universitaires de France.
  24. Ponte, J. P., & Chapman, O. (2006). Mathematics teachers’ knowledge and practices. In A. Gutierrez y P. Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future (pp. 461 - 494). Roterdham: Sense Publishers.
  25. Schlottmann, A., & Anderson, N. H. (1994). Children’s judgements of expected value. Developmental Psychology 30(1), 55 - 66. SEP (2006). Programa de estudio, educación secundaria. Dirección General de Desarrollo Curricular de la Subsecretaría de Educación Básica de la Secretaría de Educación Pública, México.
  26. Serrano, L. (1996). Significados institucionales y personales de objetos matemáticos ligados a la aproximación frecuencial de la enseñanza de la probabilidad. Tesis de doctorado no publicada, Universidad de Granada, Granada, España.
  27. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15(2), 4 - 14.
  28. Stohl, H. (2005). Facilitating students’ problem solving: Prospective teachers’ learning trajectory in technological contexts. Journal of Mathematics Teacher Education 8(3), 223 - 254. doi: 10.1007/s10857-005-2618-6
  29. Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook on Mathematics Teaching and Learning (Vol. 127, pp. 127 - 146). New York: Macmillan.
  30. Vahey, P., Enyedy, N., & Gifford, B. (1997). Beyond represen tativeness: Productive intuitions about probability. Comunicación presentada en la Annual Conference of the Cognitive Science Society. Stanford University, Palo Alto, CA.
  31. Viseu, F., & Ponte, J. P. (2009). Desenvolvimento do conhecimento didáctico do futuro profesor de Matemática com apoio das TIC´s. Revista Latinoamericana de Investigación en Matemática Educativa 9(3), 383 - 413.
  32. Watson, J., & ColIis, K. F. (1994). Multimodal functioning in understanding chance and data concepts. In J. P. Ponte and J. P. Matos (Eds), Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol. 4, pp. 369 - 376). Lisboa, España: Universidad de Lisboa.
  33. Wood, T. (2008). The international handbook of mathematics teacher education. Rotterdam: Sense Publishers.

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 

You may also start an advanced similarity search for this article.