Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 3 No. 3 (2000): Noviembre

UNA PERSPECTIVA HISTÓRICA DE LAS SERIES DE FOURIER: DE LAS ECUACIONES DE ONDAS Y DEL CALOR A LOS OPERADORES COMPACTOS Y AUTOADJUNTOS

Submitted
March 16, 2025
Published
2000-11-30

Abstract

One of the problems worked on by eighteenth century mathematicians is the "vibrant cord problem". This was studied by D'Alembert, Euler and shortly after in 1753, by Daniel Ber-noulli. The solution provided by the last consisted in expressing it as a superposition of simple waves. His ideas were applied and improved by Fourier in 1807 in the study of heat conduc-tion. They were written in the work "Théorie analytique de la Chaleur" published in 1822. Reasoning by Fourier exposed controversies and questions that have influenced the history of Mathematics. Here we comment some of them, such as the existence of continuous non-derived functions, Cantor's compound theory and notions of the integral by Cauchy, Riemann and Lebesgue. We also handled the current presentation of the series by Fourier. Finally, we commented on the role played in this century by Functional Analysis in placing Fourier's series within its abstract framework.

References

  1. Aparicio, C. & Pérez, J. (1991). Integral de Lebesgue Granada, España. Copistería la Gioconda.
  2. Apostol, T. M. (1960).Análisis Matemático. Barcelona, España: Reverté.
  3. Brezis, H. (1984). Análisis Funcional, Madrid, España: Alianza Universidad Textos.
  4. Cañada, A. (1994). Series y Transformada de Fourier y aplicaciones (vol. 1). Granada, España:
  5. Secretariado de publicaciones de la Universidad de Granada.
  6. Carleson, L. (1966/1968). Convergence and summability of Fourier series. Proc. Int. Cong. Math. (pp. 83-88), Moscow: Izdat. Mir.
  7. Carleson, L. (1966). On convergence and growth of partial sums of Fourier series. Acta Math., 116, 135-157.
  8. Coddington, E. A. (1961). An introduction to ordinaria differential equations. Englewood Cliffs, N. J., USA: Prentice-Hall.
  9. Coddington, E. A. & Levinson, N. (1955). Theory of ordinary differential equations. McGraw-Hill.
  10. Courant, R. D., & Hilbert, D. (1962). Methods of Mathematical Physics, (Vol. 1 y II). New York, USA: Interscience.
  11. Dieudonné, J. (1981). History of Functional Analysis. Amsterdam: North-Holland.
  12. Fatou, P. (1906). Séries trigonométriques et séries de Taylor. Acta Math., 30, 335-400.
  13. Fourier, J. (1822), Théorie Analytique de la Chaleur. Paris, Francia: Chez Firmin Didot. Père et Fils.
  14. González Velasco, E. A. (1992). Connections in Mathematical Analysis: the case of Fourier series. Amer. Math. Monthly, 427-441.
  15. González Velasco, E. A. (1995). Fourier Analysis and Boundary value problems. Academic Press.
  16. Grandes matemáticos. (1995). Investigación y Ciencia. Temas 1. Barcelona, España: Prensa científica, S.A.
  17. Halmos, P. R. (1967). A Hilbert space problem book. Princeton: Van Nostrand.
  18. Hobson, E. W. (1957). The theory of functions of a real variable. New York, USA: Dover (reprint).
  19. Hochstadt, H. (1973). Integral equations. New York: John Wiley and Sons.
  20. Hutson, V. & Pym, J. S. (1980). Applications of functional analysis and operator theory. Londres, Inglaterra: Academic Press Inc.
  21. Kahane, J. P. & Katznelson, Y. (1966). Sur les ensembles de divergence des series trigonometriques. Studia Math., 26, 305-306.
  22. Katznelson, Y. (1968). An introduction to Harmonic Analysis. New York, USA: Wiley.
  23. Kline, M. (1992). Mathematical thought from ancient to modern times. Madrid, España: Alianza Editorial, S.A.
  24. Korner, T. W. (1988). Fourier Analysis. Cambridge University Press.
  25. Orden y caos. (1990). Libros de Investigación y Ciencia. Barcelona, España: Prensa Científica, S.A.
  26. Stromberg, K. R. (1981). An Introduction to classical real analysis. Belmot, USA: Wadsworth.
  27. Tijonov, A. N. & Samarski, A. A. (1980). Ecuaciones de la Física Matemática. Valladares, Perú: Ed. Mir.
  28. Walker, J. S. (1967). Fourier Analysis and Wavelet analysis. Notices of the AMS, 44, 658-670.
  29. Weinberger, H. (1970). Ecuaciones diferenciales en derivadas parciales. Barcelona, España: Reverté.
  30. Zeidler, E. (1995). Applied Functional Analysis: main principles and their applications. New York, USA: Springer-Verlag.
  31. Zeidler, E. (1995). Applied Functional Analysis: Applications to Mathematical Physics. New York, USA: Springer-Verlag.
  32. Zygmund, A. (1968). Trigonometric series. Cambridge: Cambridge University Press.

Downloads

Download data is not yet available.