Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 16 No 1 (2013): Marzo

RAZONES, PROPORCIONES Y PROPORCIONALIDAD EN UNA SITUACIÓN DE REPARTO: UNA MIRADA DESDE LA TEORÍA ANTROPOLÓGICA DE LO DIDÁCTICO 1

Soumis
juillet 13, 2023
Publiée
2023-07-13

Résumé

Un genre des situations utilisés largement quand on travaille avec des rapports et proportions sont les répartitions des héritages ou les distributions des prix (des sommes d'argent), connus généralement comme des partages proportionnels. Par le moyen d'une recherche d'intervention, dans cet article on analyse la façon dont les étudiants du septième degré de l'enseignement primaire font face au traitement d'une situation de partage proportionnel. La situation a consisté en la répartition d'un prix entre quatre personnes qui ont fait des apports différents à l'inversion initial. Cette recherche montre aussi la façon dont les concepts de rapport, proportion et proportionnalité sont utilisés par les élèves pour faire face à la situation d'après les fondements théoriques et méthodologiques de la Théorie Anthropologique du Didactique (TAD).

Références

  1. Artigue, M. (2002). Learning mathematics in a CAS enviroment: the genesis of a reflection about instrumentation and the dialectics between tecnichal and conceptual work. International Journal of Computers for Mathematical Learning 7 (3), 245-274.
  2. Arzarello, F., Bosch, M., Gascón, J., & Sabena, C. (2008). The ostensive dimension through the lenses of two didactic approaches. ZDM - Mathematics Education 40 (2), 179-188.
  3. Bosch, M., & Chevallard, Y. (1999). Ostensifs et sensibilité aux ostensifs dans l'activité mathématique. Recherches en didactique des mathématiques 19 (1), 77-124.
  4. Cochran -Smith, M. (2003). Learning and unlearning: the education of teacher educators. Teaching and teacher education, 19 (2), 5-28. DOI: 10.1016/S0742-051X(02)00091-4
  5. Chevallard, Y. (1999). El análisis de las prácticas docentes en la teoría antropológica de lo didáctico. Recherches en Didactique des Mathématiques 19 (2), 221-266.
  6. Chevallard, Y. (2003). Approche anthropologique du rapport au savoir et didactique des mathématiques. In S. MAury & M Caillot (Eds.), Rapport au savoir et didactiques (pp. 81104). París, Francia: Editions Fabert.
  7. Diez - Palomar, J., Giménez, J., & García, P. (2007). Una aproximación dialógica de la inclusión en matemáticas en la escuela obligatoria. El caso del razonamiento porporcional. Educación matemática y exclusión (pp. 147 - 177). Barcelona, España: Grao.
  8. D' Amore, B. & Godino, J. (2007). El enfoque ontosemiótico como un desarrollo de la teoría antropológica en didáctica de la matemática. Revista Latinoamericana de Investigación en Matemática Educativa 10 (2), 191-218.
  9. Espinoza, L. & Azcarate, C. (2000). Organizaciones matemáticas y didácticas en torno al objeto de límite de función: una propuesta metodológica para el análisis. Enseñanza de las Ciencias ,18 (3), 355-368.
  10. García, F. (2005). La modelización como herramienta de articulación de la matemática escolar. De la proporcionalidad a las relaciones funcionales. Tesis de Doctorado no publicada, Universidad de Jaen. España.
  11. Gascón, J. (2010). Del problem solving a los recorridos de estudio e investigación. Crónica del viaje colectivo de una comunidad científica. Unión. Revista Iberoamericana de Educación Matemática, 22, 9-35.
  12. Godino, J., Batanero, C. & Font, V. (2009). Un enfoque ontosemiótico del conocimiento y la instrucción matemática. Recuperado el 15 de diciembre de 2009 de http://www.ugr.es/local/jgodino/indice_eos.htm
  13. Hart, K. (1988). Ratio and proportion. In J. Hiebert y M. Behr (Eds.), Number concepts andoperations in the Middle Grades 2. (pp. 198-219). Reston, Virginia, USA: National Council of Teachers of Mathematics.
  14. Heath, T. (1908). The thirteen books of Euclide's Elements (Vol. 2). Cambridge, Oxford Cambridge: at the University Press.
  15. Lamon, S. (2007). Rational numbers and proportional reasoning. Toward a theoretical Framework for Research. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning. (pp. 629-667). New York, EE.UU.: Information Age Pub Inc.
  16. Lamon, S. B. (1994). Ratio and Proportion: Cognitive Foundations in Unitizing and Norming. In H. Harel & J. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 89-120). Albany, EE.UU.: State University of New York Press.
  17. Lesh, R., Post, T. & Behr, M. (1988). Proportional reasoning. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the Middle Grades 2. (pp. 93-139). Reston Virginia, USA: National Council of Teachers of Mathematics.
  18. MEN. (2006). Estándares básicos de competencia matemáticas en Lenguaje Matemáticas, Ciencias y Ciudadanas.. Bogotá, Colombia: Ministerio de Educación Nacional.
  19. MEN. (1998). Lineamientos Curriculares de Matemáticas. Bogotá, Colombia: Ministerio de Educación Nacional.
  20. Modestou, M. & Gagatsis, A. (2010). Cognitive and metacognitive aspects of proportional reasoning. Mathematical teaching and learning 12 (1), 36-53.
  21. Obando, G., Vasco, C. & Arboleda, L. (2009). Praxeologías matemáticas en torno al número racional, las razones, las proporciones y la proporcionalidad. Comunicación interna no publicada. Universidad del Valle. Cali.
  22. Obando , G., Vanegas , M. & Vásquez , N. (2006). Pensamiento numérico y sistemas numéricos. Medellín, Colombia: Gobernación de Antioquia. Secretaría de Educación para la Cultura de Antioquia. Dirección de Fomento a la Educación con Calidad.
  23. Ponte, J. P. (2008). Investigar a nossa própria prática: Uma estrategia de formaçâo e de construçâo do conhecimento profissional. Revista PNA-Revista de Investigación en Didáctica de la Matemática 2 (4), 153-180.
  24. Ponte, P., Oliveira, H., Brunheira, L., Varandas, J. & Ferreira, C. (1998). O trabalho do professor numa aula de investigaçâo matemática. Quadrante 7 (2), 41-70.
  25. Posada, F. (2006). Módulo 2 Pensamiento Variacional y Razonamiento Algebraico. Medellín. Colombia: Gobernación de Antioquia. Secretaría de Educación para la Cultura de Antioquia. Dirección de Fomento a la Educación con Calidad.
  26. Vergnaud, G. (1983). Multiplicative Structures. In R. Lesh & M Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 127-124). New York, EE.UU.: Academic Press.
  27. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactiques des Mathématiques 10 (2,3), 133-170.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.