Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 22 No 3 (2019): Novembre

PUNTOS MEDIOS EN TRIÁNGULO: UN CASO DE CONSTRUCCIÓN DE SIGNIFICADO PERSONAL Y MEDIACIÓN SEMIÓTICA

DOI
https://doi.org/10.12802/relime.19.2233
Soumis
novembre 6, 2022
Publiée
2019-11-01

Résumé

Celle-ci est une étude de recherche interprétative qui suit la trace de la construction du sens d’un fait géométrique, à travers d’une interview non structuré à un étudiant de septièmeannée. Le processus a été médiatisé sémiotiquement par l’intervieweur. L’analyse a été réalisée dans une perspective fondée sur la théorie du signe triadique de Peirce. il est évident que l’introduction à une activité de nature scientifique peut bénéficier de manière significative de la médiation sémiotique d’un expert, en particulier, de sorte que l’étudiant clarifie, raconte et exprime ses idées.

Références

  1. Camargo, L., Perry, P., Samper, C., Molina, Ó. y Sáenz-Ludlow, A. (2015). Mediación semiótica en pro de la construcción de significado de rayo al hacer operativa su definición. Enseñanza de las Ciencias, 33(3), 99-116. https://doi.org/10.5565/rev/ensciencias.1594
  2. Contreras, Á. y García, M. (2011). Significados pretendidos y personales en un proceso de estudio con el límite funcional. Revista Latinoamericana de Investigación en Matemática Educativa, 14(3), 277-310.
  3. Gavilán, J. M., García, M. M. y Llinares, S. (2007). Una perspectiva para el análisis de la práctica de un profesor de matemáticas, implicaciones metodológicas. Enseñanza de las Ciencias, 25(2), 157-170. http://relime.org/index.php/numeros/todos-numeros/volumen-14/numero-14-3/484-201101c
  4. Godino, J. y Llinares, S. (2000). El interaccionismo simbólico en Educación Matemática. Revista Educación Matemática, 12(1), 70-92. http://www.revista-educacion-matematica.org.mx/descargas/Vol12/1/06Godino.pdf
  5. Gutiérrez, Á. y Jaime, A. (1995). Geometría y algunos aspectos generales de la educación matemática. Bogotá: una empresa docente & Grupo Editorial Iberoamérica. http://funes.uniandes.edu.co/674/1/Gutierrez1998Geometria.pdf
  6. Molina, Ó. (2014). Enunciado de un teorema: ¿único componente del significado del teorema? En P. Perry (Ed.), Relevancia de lo inadvertido en el aula de geometría (pp. 11-34). Bogotá: Universidad Pedagógica Nacional. http://funes.uniandes.edu.co/6691/1/2014CaMolinaEnunciado.pdf
  7. Molina, Ó., Perry, P., Camargo, L. y Samper, C. (2015). Conocer y refinar significados personales abordando un error: el caso del Teorema Localización de Puntos. Educación Matemática, 27(2), 37-66. http://somidem.com.mx/revista/2016/05/12/vol27-2-2/
  8. Perry, P., Camargo, L., Samper, C., Molina, Ó. y Sáenz-Ludlow, A. (2016). Instead of the circle… what? En A. Sáenz-Ludlow y G. Kadunz (Eds.), Semiotics as a tool for learning mathematics: How to describe the construction, visualisation, and communication of mathematical concepts (pp. 127-153). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789463003377_008
  9. Perry, P., Samper, C., Camargo, L. y Molina, Ó. (2013). Innovación en un aula de geometría de nivel universitario. En C. Samper y Ó. Molina (Eds.), Geometría plana: un espacio de aprendizaje (pp. 11-34). Bogotá: Universidad Pedagógica Nacional. http://editorial.pedagogica.edu.co/docs/files/Geometria%20Plana-2.pdf
  10. Radford, L. (2000). Sujeto, objeto, cultura y la formación del conocimiento. Revista Educación Matemática,12(1), 51-69. http://www.revista-educacion-matematica.org.mx/descargas/Vol12/1/05Radford.pdf
  11. Sáenz-Ludlow, A. y Kadunz, G. (2016). Constructing knowledge seen as a semiotic activity. En A. Sáenz-Ludlow y G. Kadunz (Eds.), Semiotics as a tool for learning mathematics. How to describe the construction, visualization, and communication of mathematical concepts (pp. 1-21). Rotterdam: Sense Publishers. https://doi.org/10.1163/9789463003377_002
  12. Sáenz-Ludlow, A. y Zellweger, S. (2012). The teaching - learning of mathematics as a double process of intra- and inter-interpretation: A Peircean perspective. En Pre-proceedings of the 12th ICME. Seoul, South Korea: ICM
  13. Samper, C., Perry, P., Camargo, L., Sáenz-Ludlow, A. y Molina, Ó. (2016). A dilemma that underlies an existence proof in geometry. Educational Studies in Mathematics, 93(1), 35-50. https://doi.org/10.1007/s10649-016-9683-x
  14. Sfard, A. (2001). Equilibrar algo desequilibrado: los Estándares del NCTM a la luz de las teorías del aprendizaje de las matemáticas (P. Perry y H. Alfonso, Trads.). Revista EMA, 6(2), 95-140. http://funes.uniandes.edu.co/1125/
  15. Sfard, A. (2008). Aprender matemáticas como la acción de desarrollar un discurso. En Aprendizaje de las matemáticas escolares desde un enfoque comunicacional (P. Perry y L. Andrade, Eds. y Trads.) (pp. 39-63). Cali: Universidad del Valle.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.

Articles les plus lus par le même auteur ou la même autrice