Artículos
Vol. 20 N.º 3 (2017): Noviembre
EL PAPEL DEL CONTEXTO Y LA FAMILIARIDAD EN EL CONTEXTO SOBRE PROBLEMAS DE MATEMÁTICAS
Universidad de Melbourne, Australia.
Resumo
A literatura sobre a educação de matemática defende o uso de problemas matemáticos incorporados em diferentes contextos
e, portanto, vários currículos de matemática refletem esta recomendação. Uma série de argumentos teóricos suportam a afirmação anterior, mas a influência do contexto e, especificamente, o papel da familiaridade com o contexto sobre o desempenho dos alunos é uma questão que ainda não está totalmente compreendido. Depois de uma revisão da literatura, argumenta-se neste artigo que noventa e tantos anos de pesquisa sobre o contexto dos problemas e do desempenho dos estudantes sugerem que não podemos concluir nada decisivo sobre essa relação, porque a evidência sobre essa relação é inegavelmente escassa. Atendendo ao fato que contexto tem vários significados na literatura, este artigo começa por esclarecer e diferenciar este termo de outros. Em seguida, argumentos teóricos e pesquisas empíricas são analisados em relação ao papel do contexto e dafamiliaridade com o contexto sobre o desempenho dos alunos.
Referências
- Almuna Salgado, F. (2016). Investigating the impact of context on students’ performance. In White, B., Chinnappan, M. & Trenholm, S. (Eds.), Proceedings of the 39th annual conference of the Mathematics Education Research Group of Australasia (pp.100-107). Adelaide: MERGA. ISBN 978-1-920846-29-9
- Almuna Salgado, F. (2010). Investigating the effect of item - context on students’ performance on Mathematics items. Master’s thesis. Available from University of Melbourne’s Catalogue (melb.b4103780)
- Almuna Salgado, F., & Stacey, K. (2014). Item context factors affecting students’ performance on mathematics items. In J. Anderson, M. Cavanagh & A. Prescott (Eds.), Proceedings of the the 37th annual conference of the Mathematics Education Research Group of Australasia
- (pp.55-62). Sydney: MERGA. ISBN: 978-1-920846-27-5
- Baranes, R., Perry, M., & Stigler, J. W. (1989). Activation of real - world knowledge in the solution of word problems. Cognition and Instruction, 6 (4), 287-318. doi: https://doi.org/10.1207/s1532690xci0604_1
- Bernardo, A. B. I. (1994). Problem - specific information and the development of problem - type schemata. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20 (2), 379-395.
- Bishop, A. J. (1993). Conceptualising cultural and social contexts in mathematics education. In B. Atweh, C. Kanes, M. Carss & G. Booker (Eds.), Proceedings of the Sixteenth AnnualConference of the Mathematics Education Research Group of Australasia. Brisbane: MERGA.
- Blum, W. (2002). ICMI Study 14: Applications and Modelling in Mathematics Education. Educational Studies in Mathematics, 51 (1), 149-171.
- Blum, W., Galbraith, P. L., Henn, H. W., & Niss, M. (2007). Modelling and applications in mathematics education: the 14th ICMI study. New York: Springer.
- Blum, W., Galbraith, P., & Niss, M. (2007). Introduction. In W. Blum, P. Galbraith, H. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI Study (Vol. 10, pp. 3-32). New York: Springer.
- Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects - State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 1, 37-68.
- Boaler, J. (1994). When Do Girls Prefer Football to Fashion? An Analysis of Female Underachievement in Relation to ’Realistic’ Mathematic Contexts. British Educational Research Journal, 20, 5, 551-564. doi: 10.2307/1500676
- Boaler, J. (1993). The Role of Contexts in the Mathematics Classroom: Do They Make Mathematics More ’Real’? For the Learning of Mathematics, 13, 2, 12-17. doi: 10.2307/40248079
- Brownell, W. A., & Stretch, L. B. (1931). The effect of unfamiliar settings on problem - solving. Durham, N.C: Duke University Press.
- Busse, A. (2011). Upper secondary students’ handling of real - world contexts. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (Vol. 1, pp. 37-46). Dordrecht: Springer Netherlands.
- Busse, A., & Kaiser, G. (2003). Context in application and modelling - An empirical approach. In Q. X. Ye, W. Blum, S. Houston & Q. Y. Jiang (Eds.), Mathematical modelling in education and culture: ICTMA 10 (pp. 3-15). Chichester, UK: Albion Publishing.
- Carpenter, T. P., Lindquist, M. M., Matthews, W., & Silver, E. A. (1983). Results of the third NAEP mathematics assessment: Secondary school. The Mathematics Teacher, 76 (9), 652-659. doi: 10.2307/27963780
- Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British Journal of Developmental Psychology, 3 (1), 21-29. doi: 10.1111/j.2044-835X.1985.tb00951.x
- Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1987). Written and Oral Mathematics. Journal for Research in Mathematics Education, 18 (2), 83-97. doi: 10.2307/749244
- Chapman, O. (2006). Classroom Practices for Context of Mathematics Word Problems. Educational Studies in Mathematics, 62 (2), 211-230. doi: 10.1007/s10649-006-7834-1
- Chipman, S. F., Marshall, S. P. & Scott, P. A. (1991). Content Effects on Word Problem Performance: A Possible Source of Test Bias? American Educational Research Journal, 28(4), 897-915. doi: 10.3102/00028312028004897
- Civil, M. & Planas, N. (2004). Participation in the mathematics classroom: does every student have a voice? For the Learning of Mathematics, 24 (1), 7-12
- Clarke, D., & Helme, S. (1996). Context as Construction. In C. Keitel, U. Gellert, E. Jablonka & M. Muller (Eds.), Proceedings of the 47th meeting of the International Commision for the Study and Improvement of Mathematics Teaching in Berlin (pp. 379-389). Berlin: CIEAM.
- Cooper, B. & Dunne, M. (1998). Anyone for tennis? Social class differences in children’s responses to national curriculum mathematics testing. The Sociological Review, 46 (1), 115-148.
- De Lange, J. (2007). Large - Scale Assessment and Mathematics Education. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics (pp. 1111-1142). Charlotte, NC: Information Age Publising Inc.
- De Lange, J. (1999). Framework for Classroom Assessment in Mathematics. Madison, WI: NICLA/ WCER.
- Depaepe, F., De Corte, E. & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26 (2), 152-160. doi: http://dx.doi.org/10.1016/j.tate.2009.03.016
- Felton, M. (2010). Is math politically neutral? Teaching Children Mathematics, 17 (2), 60-63.
- Fiddick, L., Cosmides, L. & Tooby, J. (2000). No interpretation without representation: the role of domain - specific representations and inferences in the Wason selection task. Cognition, 77(1), 1-79. doi: http://dx.doi.org/10.1016/S0010-0277(00)00085-8
- Fuchs, L. S., Fuchs, D., Hamlett, C. L. & Appleton, A. C. (2002). Explicitly Teaching for Transfer: Effects on the Mathematical Problem - Solving Performance of Students with Mathematics Disabilities. Learning Disabilities Research & Practice, 17 (2), 90.
- Galbraith, P., Stillman, G. & Brown, J. (2006). Identifying key transition activities for enhanced engagement in mathematical modeling. In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds.), Proceedings of the 29th annual conference of the Mathematics Education Research
- Group of Australasia (pp. 237-245). Adelaide: MERGA.
- Galbraith, P. (2012). Scoring points: Goals for real world problem solving. Australian Senior Mathematics Journal, 26 (2), 51-62.
- Galbraith, P. (1987). Modelling - teaching modelling. The Australian Mathematics Teacher, 43 (4), 6-9.
- Greatorex, J. (2014). Context in Mathematics questions. Research Matters, 17, 18-23. Retrieved from http://www.cambridgeassessment.org.uk/Images/164660-research-matters-17-january-2014.pdf
- Griggs, R. A. & Cox, J. R. (1982). The elusive thematic - materials effect in Wason’s selection task. British Journal of Psychology, 73 (3), 407-420.
- Helme, S. (1994). Mathematics Embedded in Context: The Role of Task Context in Performance, Task Perceptions and the Solution Methods of Adult Women Students. Master of Education, Australian Catholic University, Melbourne.
- Hembree, R. (1992). Experiments and Relational Studies in Problem Solving: A Meta - Analysis. Journal for Research in Mathematics Education, 23 (3), 242-273. doi: 10.2307/749120
- Huang, H. (2004). The impact of context on children’s performance in solving everyday mathematical problems with real - world settings. Journal of Research in Childhood Education, 18 (4), 278-292.
- Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures (Vol. 22). New York: Routledge & Kegan Paul PLC.
- Johnson - Laird, Legrenzi, P. & Legrenzi, M. S. (1972). Reasoning and a sense of reality. British Journal of Psychology, 63 (3), 395-400.
- Johnson - Laird, P. & Wason, P. (1970). A theoretical analysis of insight into a reasoning task. Cognitive Psychology, 1 (2), 134-148.
- Lave, J. (1988). Cognition in Practice: Mind, mathematics and culture in everyday life. Cambridge: Cambridge University Press.
- Leighton, J., & Gokiert, R. (2005). The Cognitive Effects of Test Item Features: Informing Item Generation by Identifying Construct Irrelevant Variance. Paper presented at the Annual Meeting of the National Council on Measurement in Education (NCME), Quebec, Canada.
- Lewis, A. B. & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79 (4), 363-371.
- Lyda, W. J. & Franzén, C. G. (1945). A Study of Grade Placement of Socially Significant Arithmetic Problems in the High - School Curriculum. The Journal of Educational Research, 39 (4), 292-295. doi: https://doi.org/10.1080/00220671.1945.10881432
- Manktelow, K., & Evans, J. (1979). Facilitation of reasoning by realism: Effect or non - effect? British Journal of Psychology, 70 (4), 477-488.
- McNeil, N. M., Uttal, D. H., Jarvin, L. & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19 (2), 171-184. doi: http://dx.doi.org/10.1016/j.learninstruc.2008.03.005
- Marsh, B., Tood, P. M. & Gigerenzer, G. (2004). Cognitive heuristics: Reasoning the fast and frugal way. In J. P. Leighton & R. J. Sternberg (Eds.), The Nature of Reasoning (pp. 273-290). New York: University Cambridge Press.
- National Council of Teachers of Mathematics. (2011). Focus in high school mathematics : fostering reasoning and sense making for all students: Reston, VA : National Council of Teachers of Mathematics.
- Niss, M., Bruder, R., Planas, N., Turner, R. & Villa - Ochoa, J. A. (2016). Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48 (5), 611-632. doi: https://doi.org/10.1007/s11858-016-0799-3
- Organisation for Economic Co-Operation and Development. (2013). PISA 2015 Draft mathematics framework. Retrieved January 6, 2015, from https://goo.gl/HdttDk
- Organisation for Economic Co-Operation and Development. (2006). PISA released items -Mathematics Retrieved May 22, 2013, from http://www.oecd.org/pisa/38709418.pdf
- Pierce, R. & Stacey, K. (2006). Enhancing the image of mathematics by association with simple pleasures from real world contexts. ZDM, 38 (3), 214-225. doi:https://doi.org/10.1007/BF02652806
- Pollard, P. & Evans, J. (1987). Content and Context Effects in Reasoning. The American Journal of Psychology, 100 (1), 41-60. doi: 10.2307/1422641
- Post, R. (1958). A study of certain factors affecting the understanding of verbal problems in arithmetic. Doctoral dissertation, Columbia University, New York.
- Ross, S. M. McCormick, D., & Krisak, N. (1986). Adapting the Thematic Context of Mathematical Problems to Student Interests: Individualized versus Group - Based Strategies. Journal of Educational Research, 79 (4), 45-252 doi: https://doi.org/10.1080/00220671.1986.10885685
- Roth, W. M. (1996). Where Is the Context in Contextual Word Problems?: Mathematical Practices and Products in Grade 8 Students’ Answers to Story Problems. Cognition and Instruction, 14 (4), 487-527. doi: https://doi.org/10.1207/s1532690xci1404_3
- Shannon, A. (2007). Task Context and Assessment. In A. Schoenfeld (Ed.), Assessing Mathematical Proficiency (pp. 177-191). New York: MSRI Publications.
- Silver, E. A. (1981). Recall of Mathematical Problem Information: Solving Related Problems. Journal for Research in Mathematics Education, 12 (1), 54-64. doi: 10.2307/748658
- Stacey, K. (2015). The Real World and the Mathematical World. In K. Stacey & R. Turner (Eds.), Assessing Mathematical Literacy. The PISA Experience (pp. 57-84). Cham: Springer International Publishing.
- Stacey, K., & Turner, R. (2015). The Evolution and Key Concepts of the PISA Mathematics Frameworks. In K. Stacey & R. Turner (Eds.), Assessing Mathematical Literacy (pp. 5-33): Springer International Publishing.
- Stillman, G. (2002). Assessing higher order mathematical thinking through applications. Doctoral dissertation, The University of Queensland, Brisbane.
- Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36 (2), 157-194. doi:10.1023/a:1003246329257
- Sutherland, J. (1942). An investigation into some aspects of problem solving in arithmetic. British Journal of Educational Psychology, 12 (1), 35-46. doi:10.1111/j.2044-8279.1942.tb02178.x
- The Florida Legislature Service Bureau, 1980. Summary of General Legislation Act of 1980. Retrieved from http://archive.law.fsu.edu/library/collection/FlSumGenLeg/FlSumGenLeg1980.pdf
- Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics instruction. The Netherlands, Dordrecht: Reidel.
- Turner, R. (2011). Exploring mathematical competencies. Research Developments, 24 (5), 2-7.
- Van den Heuvel - Panhuizen, M. (2005). The Role of Contexts in Assessment Problems in Mathematics. For the Learning of Mathematics, 25 (2), 2-23.
- Van Den Heuvel - Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54 (1), 9-35. doi:10.1023/B:EDUC.0000005212.03219.dc
- Van den Heuvel - Panhuizen, M. (1999). Context problems and assessment: Ideas from the Netherlands. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 130-142). Buckingham, UK: Open University Press.
- Verschaffel, L., De Corte, E., & Greer, B. (2000). Making sense of word problems. Exton, PA: Swets & Zeitlinger Publishers.
- Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4 (4), 273-294. doi: http://dx.doi.org/10.1016/0959-4752(94)90002-7
- Washburne, C. W. & Osborne, R. (1926a). Solving Arithmetic Problems. I. The Elementary School Journal, 27 (3), 219-226. doi: https://doi.org/10.1086/461989
- Washburne, C. W. & Osborne, R. (1926b). Solving Arithmetic Problems. II. The Elementary School Journal, 27 (4), 296-304. doi:https://doi.org/10.1086/462005
- Watson, R. & Yip, P. (2011). How many were there when it mattered? Significance, 8 (3), 104-107. doi: 10.1111/j.1740-9713.2011.00502.x
- Wedege, T. (1999). To know or not to know – Mathematics, that is a question of context. Educational Studies in Mathematics, 39 (1-3), 205-227. https://doi.org/10.1023/A:1003871930181
- Yoshida, H., Verschaffel, L. & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning and Instruction, 7 (4), 329-338. doi: http://dx.doi.org/10.1016/S0959-4752(97)00007-8
Downloads
Não há dados estatísticos.