Artículos
Vol. 15 N.º 1 (2012): Marzo
COGNIÇÕES E TIPO DE COMUNICAÇÃO DO PROFESSOR DE MATEMÁTICA. EXEMPLIFICAÇÃO DE UM MODELO DE ANÁLISE NUM EPISÓDIO DIVIDIDO
Centro de Investigação sobre o Espaço e as Organizações (CIEO), Universidade do Algarve
Centro de Investigação sobre o Espaço e as Organizações (CIEO), Universidade do Algarve
-
Enviado
-
julho 14, 2023
-
Publicado
-
2012-03-01
Resumo
Neste artigo, enfocamos a nossa atenção na aula e, de forma mais concreta, nas ações do professor durante o processo de ensino, já que consideramos que tais ações são condicionadas ou potencializadas por suas cognições (crenças, conhecimento matemático para o ensino e objetivos). Por este motivo, expomos e discutimos um modelo de análise sobre a prática do professor, o qual está enfocado nas ações, cognições e tipo de comunicação matemática que promove (como uma manifestação das cognições), assim como em suas relações. Com intenção de exemplificar o processo de modelagem, recorremos a uma situação (episódio) no qual uma professora simula apresentar o conteúdo (conceito de milésimo) durante dois momentos diferentes. Em primeiro lugar, abordamos o que entendemos com relação a cada um dos componentes do modelo, e, em segundo lugar, apresentamos o processo de modelagem e as relações entre os componentes. Por último, debatemos sobre algumas implicações deste tipo de análise para e na formação de professores.
Referências
- Aguirre, J., & Speer, N. (1999). Examining the relationship between beliefs and goals in teacher practice. Journal of Mathematical Behavior 18(3), 327-356.
- Ainley, J. (1988). Perceptions of teachers’ questioning styles. In A. Borbás (Ed.), Proceedings of the 12th Annual Meeting of the International group for the Psychology of Mathematics Education (pp. 92-99). Veszprém, Hungria: PME.
- Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education 59(5), 389-407. doi: 10.1177/0022487108324554
- Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher Education 3(2), 125-153. doi: 10.1023/A:1009947032694
- Calderhead, J. (1996). Teachers: Beliefs and Knowledge. In D. Berliner & R. Calfee (Eds.), Hand- book of Educational Psychology (pp. 709-725). Nova York: Macmillan.
- Carrillo, J., Climent, N., Gorgorió, N., Prat, M. y Rojas, F.(2008). Análisis de secuencias de aprendizaje matemático desde la perspectiva de la gestión de la participación. Enseñanza de las Ciencias 26(1), 67-76.
- Climent, N. (2005). El desarrollo profesional del maestro de Primaria respecto de la enseñanza de la matemática. Un estudio de caso. Tesis de doctorado. Recuperada de Michigan, Proquest Michigan University (www.proquest.co.uk).
- Charalambous, C. Y. (2008). Mathematical knowledge for teaching and the unfolding of tasks in mathematics lessons: Integrating two lines of research. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepulveda (Eds.), Proceedings of the 32 nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 281-288). Morelia, México: PME.Davis, B., & Renert, M. (2009). Mathematics-for-teaching as shared dynamic participa- tion. For the learning of mathematics 29(3), 37-43.
- Ferin, I. (2002). Comunicação e culturas do quotidiano. Lisboa, Portugal: Quimera. Garcia, L., Azcárate, C. y Moreno, M. (2006). Creencias, concepciones y conocimiento profesional de profesores que enseñan cálculo diferencial a estudiantes de ciencias económicas. Revista Latinoamericana de Investigación en Matemática Educativa 9(1), 85-116.
- Grootenboer, P. (2008). Mathematical belief change in prospective primary teachers. Journal of Mathematics Teacher Education 11 (6), 479-497. doi: 10.1007/s10857-008-9084-x
- Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematics knowledge for teaching on student achievement. American Education Research Journal 42(2), 371-406. doi: 10.3102/00028312042002371
- Monteiro, R., Carrillo, J., & Aguaded, S. (2008). Emergent theorizations in Modelling the Teaching of Two Science Teachers. Research in Science Education 38(3), 301-319. doi: 10.1007/s11165-007-9051-z
- Pajares, F. (1992). Teacher’s beliefs and educational research: cleaning up a messy construct. Review of Educational Research 62 (3), 307-332.
- Potari, D. & Jaworski, B. (2002). Tackling complexity in mathematics teaching development: using the teaching triad as a tool for reflection and analysis. Journal for Research in Mathematics Education 5(4), 351-380. doi: 10.1023/A:1021214604230
- Reséndiz, E. (2006). La Variación y las explicaciones didácticas de los profesores en situación escolar. Revista Latinoamericana de Investigación en Matemática Educativa 9(3), 435-458.
- Ribeiro, C. (2010). A prática de uma professora e seus objectivos: percursos e (in)alterações. In H. Gomes, L. Menezes & I. Cabrita (Org.), Actas do XXI Seminário de Investigação em Educação Matemática 2010 (pp. 60-71). Lisboa, Portugal: APM
- Ribeiro, C. & Carrillo, J. (2011). Knowing mathematics as a teacher. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh Congress of European Society for Research in Mathematics Education, CERME 7 (pp. 2818-2826). Rzeszów: ERME. (ISBN: 978-83-7338- 683-9)
- Ribeiro, C., Carrillo, J. e Monteiro, R. (2008). Uma perspectiva cognitiva para a análise de uma aula de matemática do 1.º ciclo: um exemplo de apresentação de conteúdo tendo como recurso o desenho no quadro. En R. Luengo, B. Gómez, M. Camacho e L. J. Blanco (Eds.), Investigación en Educación Matemática XII (pp. 545-556). Badajoz, Espanha: Sociedad Española de Investigación en Educación Matemática, SEIEM.
- Ribeiro, C., Carrillo, J. y Monteiro, R. (2009). ¿De qué nos informan los objetivos del profesor sobre su práctica? Análisis y influencia en la práctica de una maestra. En M. J. González, M. T. González Astudillo y J. Murrillo (Eds.), Investigación en Educación Matemática XIII (pp. 415-424). Santander, España: Sociedad Española de Investigación en Educación Matemática, SEIEM.
- Ribeiro, C., Monteiro, R., & Carrillo, J. (2009). Professional knowledge in an improvisation episode: the importance of a cognitive model. In Durand-Guerrier, V., Soury-Lavergne, S. & Arzarello, F. (Eds), Proceedings of CERME6 (2030-2039). Lyon, France: ERME. Recuperado en Dicember de 2010 de http://www.inrp.fr/editions/editions-electroniques/cerme6/working-group-10
- Saxe, G. (1991). Culture and cognitive development: Studies in mathematical understanding. Hillsdale, USA: Lawrence Erlbaum Associates.
- Schoenfeld, A. (1998a). On modeling teaching. Issues in Education 4(1), 149-162.
- Schoenfeld, A. (1998b). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1-94.
- Schoenfeld, A. (1999). Models of the teaching process. Journal of Mathematical Behavior 18(3), 243-261.
- Schoenfeld, A., Ministrell, J., & Zee, E. v. (1999). The detailed analysis of an established teacher’s non-traditional lesson. Journal of Mathematical Behavior 18(3), 281-325. doi: 10.1016/S0732-3123(99)00035-8
- Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15 (2), 4-14.
- Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics teaching 77, 20-26.
- Stake, R. (2000). Qualitative case studies. In N. K. Denzin e Y. Lincoln (Ed.). Handbook of qualitative research. Qualitative case studies (435-454). Thousand Oaks: Sage. Star, J. & Strickland, S. K. (2008). Learning to observe: using video to improve preservice mathematics teachers’ ability to notice. Journal of Mathematics Teacher Education 11(2), 107-125.
- Strauss, A. & Corbin, J. (1997). Grounded theory in practice. Thousand Oaks, CA: Sage Publications.
- Stigler, J. & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York, NY: The Free Press.
- Tomás Ferreira, R. A. (2005). Portuguese student teacher’s evolving teaching modes: A modified teacher development experience. Unpublished Doctoral Dissertation, Illinois State University, IL, USA
- Turner, F. (2009). Developing the Ability to Respond to the Unexpected. In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics (Vol. 29(1), pp. 91-96). Cambridge (UK): British Society for Research into Learning Mathematics.
Downloads
Não há dados estatísticos.