Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 22 N.º 2 (2019): Julho

RAZONAMIENTO CONFIGURAL Y ORGANIZACIÓN DISCURSIVA EN PROCESOS DE PRUEBA EN CONTEXTO GEOMÉTRICO

DOI
https://doi.org/10.12802/relime.19.2224
Enviado
novembro 6, 2022
Publicado
2019-07-04

Resumo

Neste estudo analisamos a mudança de status das diferentes afirmações matemáticas que compõem o processo discursivo na solução de problemas de teste em um contexto geométrico. Em particular, nos concentramos em como ele se desenvolve e organiza o discurso escrito (resposta) que comunica a solução,com o objetivo de identificar relações com os resultados do raciocínio configural. Para isso, analisamos as respostas dos alunos do quarto ano do ensino médio obrigatório a quatro problemas de teste em um contexto geométrico. Os resultados mostram a necessidade de uma mudança no status das afirmações matemáticas envolvidas no raciocínio que levam à solução e o desenvolvimento de um argumento que progride do modo de acumulação para o modo de substituição. No entanto, a presença dessas características do processo de teste não garante que o “truncamento” do raciocínio configural gerado pelo teste formal seja dado, devido, entre outros fatores, à influência exercida pela subconfiguração relevante identificada no processo de raciocínio.

Referências

  1. Clemente, F. y Llinares, S. (2015). Formas de discurso y razonamiento configural de estudiantes para maestro en la resolución de problemas de geometría. Enseñanza de las Ciencias, 33(1), 9-27. doi:10.5565/rev/ensciencias.1332
  2. Clemente, F., Torregrosa, G. y Llinares, S. (2015). La identificación de figuras prototípicas en el desarrollo del razonamiento configural. XIV CIAEM-IACME. Chiapas, México, 2015.
  3. Clemente, F., Llinares, S., y Torregrosa, G. (2017). Visualization and Configural Reasoning. Bolema: Boletim de Educação Matemática, 31(57), 497-516. doi: 10.1590/1980-4415v31n57a24
  4. Douek, N. (2010). Approaching proof in school: From guided conjecturing and proving to a story of proof construction. CERME6 (pp. 332-342).
  5. Duval, R. (1998). Geometry from a cognitive point a view. In C. Mammana & V. Villani (Eds.), Perspective on the Teaching of Geometry for the 21st Century, 37-51. Dordrecht / Boston: Kluwer Academic Publishers.
  6. Duval, R. (1999). Semiosis y pensamiento humano. Cali, Colombia: Artes gráficas Univalle.
  7. Duval, R. (2016a). Las condiciones cognitivas del aprendizaje de la geometría. Desarrollo de la visualización, diferenciaciones de los razonamientos, coordinación de sus funcionamientos. En L. Radford y B. D’Amore (Eds.), Comprensión y aprendizaje en matemáticas: perspectivas semióticas seleccionadas (pp 13-61). Bogotá, Colombia: Editorial Universidad Distrital Francisco José de Caldas.
  8. Duval, R (2016b). El funcionamiento cognitivo y la comprensión de los procesos matemáticos de la prueba. En L. Radford y B. D’Amore (Eds.), Comprensión y aprendizaje en matemáticas: perspectivas semióticas seleccionadas (pp. 95-125). Bogotá, Colombia: Editorial Universidad Distrital Francisco José de Caldas.
  9. Gal, H., y Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational studies in mathematics, 74(2), 163-183.
  10. Hanna, G., y de Villiers, M. (2008). ICMI Study 19: Proof and proving in mathematics education. ZDM: International Journal on Mathematics Education, 40(2), 329-336.
  11. Heinze, A., Cheng, Y. H., Ufer, S., Lin, F. L., y Reiss, K. (2008). Strategies to foster students’ competencies in constructing multi-steps geometric proofs: Teaching experiments in Taiwan and Germany. ZDM: International Journal on Mathematics Education, 40(3), 443-453.
  12. Llinares, S. y Clemente, F. (2014). Characteristics of pre-service primary school teachers’ configural reasoning. Mathematical Thinking and Learning, 16(3), 234-250. doi: 10.1080/10986065.2014.921133
  13. Mariotti, M. A. (2006). Proof and proving in mathematics education. En A. Gutiérrez y P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 173-204). Rotterdam: Sense Publishers.
  14. Mesquita, A. L. (1998). On conceptual obstacles linked with external representation in geometry. Journal of Mathematical Behavior, 17(2), 183-195.
  15. Pitta-Pantazi, D., y Christou, C. (2009). Cognitive styles, dynamic geometry and measurement performance. Educational Studies in Mathematics, 701, 5-26.
  16. Prior, J. y Torregrosa, G. (2013). Razonamiento configural y procedimientos de verificación en contexto geométrico. RELIME. Revista latinoamericana de investigación en matemática educativa, 16(3), 339-368.
  17. Reiss, K., Heinze, A., Renkl, A. & Groß, C. (2008). Reasoning and proof in geometry: Effects of a learning environment based on heuristic worked-out examples. ZDM, 40(3), 455-467. doi: 10.1007/s11858-008-0105-0
  18. Robotti, E. (2012). Natural language as a tool for analyzing the proving process: the case of plane geometry proof. Educational Studies in Mathematics, 80(3), 433-450.
  19. Saorín, A., Torregrosa, G. y Quesada, H. (2017a). Razonamiento configural y argumentación en procesos de prueba en contexto geométrico. En J. M. Muñoz-Escolano, A. Arnal - Bailera, P, Beltrán - Pellicer, M. L. Callejo y J. Carrillo (Eds), Investigación en Educación Matemática XXI (pp. 467-476). Zaragoza: SEIEM.
  20. Saorín, A., Torregrosa, G. y Quesada, H. (2017b). Razonamiento configural extendido: coordinación de procesos cognitivos en la resolución de problemas geométricos empíricos. II CEMACYC. Cali, Colombia, 2017.
  21. Torregrosa, G. y Quesada, H. (2007). Coordinación de procesos cognitivos en geometría. RELIME. Revista Latinoamericana de investigación en Matemática Educativa,10(2), 275-300.
  22. Torregrosa, G., Quesada, H. y Penalva M. C. (2010). Razonamiento configural como coordinación de procesos de visualización. Enseñanza de las Ciencias, 28(3), 327-340. doi: https://doi.org/10.5565/rev/ec/v28n3.187
  23. Torregrosa, G. (2017). Coordinación de procesos cognitivos en la resolución de problemas: relación entre geometría y álgebra. Avances de Investigación en Educación Matemática, 12, 1-17.
  24. Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge. Educational Studies in Mathematics, 48(1), 101-119.
  25. Zandieh, M., Roh, K.H., y Knapp, J. (2014). Conceptual blending: Student reasoning when proving “conditional implies conditional” statements. The Journal of Mathematical Behavior, 33, 209-229.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.