Artículos
Vol. 23 N.º 1 (2020): Março
HIPÓTESIS Y CONJETURAS EN EL DESARROLLO DEL PENSAMIENTO ESTOCÁSTICO: RETOS PARA SU ENSEÑANZA Y EN LA FORMACIÓN DE PROFESORES
Universitat de València, España
Resumo
Neste artigo ele reflete sobre a importância que pode ter a formulação de hipóteses e conjecturas, não só para o desenvolvimento do raciocínio demonstrativo, mas também para o desenvolvimento do pensamento estocástico de estudantes. Defende este currículo de razões, uma abordagemde ensino baseada na resolução de problemas, uma forma de resolver os problemas que considera a simulação como um método de resolução de conteúdo heurística e, finalmente, no novo as propostas em que o cidadão do século XXI exigirá e matemática, que inclui a análise de dados em contextos de incerteza. Uma proposta de formação inicial de professores permite-lhes para endereço tais desafios, portanto, é apresentado.
Referências
- Batanero, C., Chernoff, E., Engel, J., Lee H., y Sánchez, E. (Eds.) (2016). Research on Teaching and Learning Probability, ICME-13 Topical Surveys, DOI: https://doi.org/10.1007/978-3-319-31625-3_1
- Begué, N., Batanero, C., y Gea, M. M. (2018). Comprensión del valor esperado y variabilidad de la proporción muestral en estudiantes de educación secundaria obligatoria. Enseñanza de las Ciencias36(2), 63-79.
- Bernoulli, J. (1987/1713). Ars conjectandi - 4ème partie. Rouen: IREM. (Original work published in 1713)
- Beth, B. (1989). Using simulation to model real-world problems. In M. Morris (Ed.) Studies in Mathematics Education. The teaching of statistics, 7, 95-100. Paris: UNESCO.
- Benson, C. T., & Jones, G. A. (1999). Assessing Students’ Thinking in Modeling Probability Contexts. The mathematics Educator 4(2), 1-21
- Borovcnik, M., & Kapadia, R. (2018). Reasoning with Risk: Teaching Probability and Risk as Tween Concepts. In C. Batanero & E. Chernoff (eds.), Teaching and Learning Stochastics,ICME-13 Monographs. DOI: https://doi.org/10.1007/978-3-319-72871-1_17
- Bunge, M. (2013). La ciencia. Su método y su filosofía. Pamplona: Laetoli
- Cardeñoso, J. M., Moreno, A., García-González, E., y Jiménez-Fontana, R. (2017). El sesgo de equiprobabilidad como dificultad para comprender la incertidumbre en futuros docentes argentinos. Avances de Investigación en Educación Matemática 11, 145 – 167
- Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modelling and Simulation in Statistics and Probability Teaching. In C. Batanero, G. Burril, and C. Reading (eds.), Teaching Statistics in School Mathematics- Challenge for Teaching and Teachers Education: A Joint ICMI / IASE Study, (pp. 85-95). New York: Springe
- De Villiers, M., & Heideman, N. (2014). Conjecturing, Refuting and Proving within the Context of Dynamic Geometry. Learning and Teaching Mathematics, 17, 20-26.
- Devlin, K. (2018). The Mathematics People Really Need. Presentación disponible en http://curriculumredesign.org/wp-content/uploads/DEVLIN-talk-2018.pdf y vídeo en https://youtu.be/qBOnWZyq468, ambas visitada el 22 de junio de 2018
- Eichler, A., & Vogel, M. (2014). Three Approaches for Modelling Situations with Randomness. In E. J. Chernoff, B. Sriraman (eds.) (2014), Probabilistic Thinking, Presenting Plural Perspective (pp. 75-100). Dordrecht: Springer Science+Business Media
- Fernández, B., y Rodríguez, B. (2015). Del Ars Conjectandi al Valor de riesgo. Miscelánea matemática, 60, 25-45
- Ferrater Mora, J. (1965). Diccionario de Filosofía. Buenos Aires: Editorial Sudamericana
- Fiallo, J., & Gutiérrez, A. (2017). Analysis of the cognitive unity or rupture between conjecture and proof when learning to prove on a grade 10 trigonometry course. Educational Studies in Mathematics, 92(2), 145-167
- Furinghetti, F., Olivero F., & Paola, D. (2010). Students approaching proof through conjectures: snapshots in a classroom. International Journal of Mathematics Education in Science and Technology 32(3), 319-335. DOI: https://doi.org/10.1080/00207390120360
- Gordon, H. (1997). Discrete Probability. New York: Springer
- Huerta, M. P. (2002). El problema de la cueva. Elementos para un análisis didáctico de los problemas de probabilidad. Enseñanza de las Ciencias, 20(1), 75-86
- Huerta, M. P. (2015). La resolución de problemas de probabilidad con intención didáctica en la formación de maestros y profesores de matemáticas. En C. Fernández, M. Molina y N. Planas(eds.), Investigación en Educación MatemáticaXIX (pp. 105-119). Alicante: SEIEM
- Huerta, M. P. (2018). Preparing Teachers for Teaching Probability Through Problem Solving. In C.Batanero and E. J. Chernoff (eds.), Teaching and Learning Stochastics, ICME-13 Monographs(pp. 293-311). DOI: https://doi.org/10.1007/978-3-319-72871-1_17.
- Lakatos, I. (1976). Proofs and Refutations. Cambridge: Cambridge Academic Press.
- Lampert, M. (1990). When the Problem Is Not the Question and the Solution Is not the Answer: Mathematical Knowing and Teaching. American Educational Research Journal, 27(1), 29-63.
- Lecoutre, M. P. (1992). Cognitive models and problem spaces in purely random situations. Educational Studies in Mathematics, 23, 557-568.
- Llinares, S. (2018). Escribir narrativas. De observar a mirar profesionalmente. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 39-50). Gijón: SEIEM
- Maaβ, K., & Doorman. (2013). A model for a widespread implementation of inquiry-based leaning. ZDM-International Journal on Mathematics Education, 45(6), 887-899.
- Makar, K. & Rubin, A. (2014). Informal statistical inference revisited. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA. Voorburg, The Netherlands: International Statistical Institute.
- Martínez, M. L., Huerta, P. y González, E. (2018). Dificultades de los maestros y profesores en formación para identificar hipótesis y conjeturas en una tarea de probabilidad. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXI (p.638). Gijón: SEIEM
- Martínez, M. L. y Huerta, M. P. (2015). Diseño e implementación de una situación de incertidumbreen una clase de educación infantil. Edma 0-6: Educación Matemática en la Infancia, 4(1), 24-36.
- Ministerio de Educación, Cultura y Deporte (MEC, 2014a). Real Decreto 126/2014 de 28 de febrero por que se establece el currículo básico de la Educación Primaria. Boletín Oficial del Estado de 1 de marzo de 2014. Madrid.
- Ministerio de Educación, Cultura y Deporte (MEC, 2014b). Real Decreto 1105/2014 de 26 de diciembre por que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Boletín Oficial del Estado de 1 de enero de 2015. Madrid.
- Minyana, M. (2018). Hipòtesi i conjectures en el pensament estocàstic d’estudiants de 1er de Educació Secundària Obligatòria (12-13 anys). (Hypothesis and conjectures in 12-13 aged-students’ stochastic thinking). Trabajo de Fin de Máster de Investigación en Didácticas Específicas. Departament de Didàctica de la Matemàtica. Universitat de València.
- Pfannkuch, M. (2018). Reimaging Curriculum Approaches. In D. Ben-Zvi, K. Makar & J. Garfield (eds.) (2018), International Handbook of Research in Statistics Education (pp. 387-413). Springer International Handbooks of Education. https:// doi.org/10.1007/978-3-3319-66195-7_12
- NCTM (2018). Principles and Standards for School Mathematics. Disponible en https://www.nctm.org/uploadedFiles/Standards_and_Positions/PSSM_ExecutiveSummary.pdf (visitado el 12 de julio de 2018)
- Poincaré, H. (1992). La Science et l’Hypothèse. Rueil-Malmason: La Bohème.
- Polya, G. (1966). Matemáticas y razonamiento plausible. Madrid: Tecnos.
- Popper, K. (1977). La lógica de la investigación científica. Madrid: Tecnos.
- Pratt, D. (2011). Re-connecting probability and reasoning about data in secondary school teaching. Proceedings of the 58th World Statistical Congress (pp. 890-899). Dublin.
- Saldanha, L., & Liu, Y. (2014). Challenges in Developing Coherent Probabilistic Reasoning: Rethinking Randomness and Probability from a Stochastic Perspective. In E. J. Chernoff, B. Sriraman (eds.) (2014), Probabilistic Thinking, Presenting Plural Perspective (pp. 367-398). Dordrecht: Springer Science+Business Media.
- Schup, H. (1989). Appropriate teaching and learning of stochastics in the middle grades (5-10). In M. Morris (Ed.) Studies in Mathematics Education. The teaching of statistics. (vol. 7), (pp. 101-121). Paris: UNESCO.
- Spiegelhalter, D., & Gage, J. (2014). What Can Education Learn from Real-World Communication of Risk and Uncertainty? The Mathematics Enthusiast 12(1-3), 4-10.
- Serrano, L., Batanero, C., Ortiz, J. J., & Cañizares M. J. (1998). Heurísticas y sesgos en el razonamiento probabilístico de los estudiantes de secundaria. Educación Matemática,10(1), 7-25.
- Shaughnessy, J. M. (1983). The psychology of inference and the teaching of probability and statistics: Two sides of the same coin? In R. W. Sholz (Ed.), Decision making under uncertainty(pp. 325-350). Amsterdam, The Netherlands: Elsevier.
- Wild, C. J., & Pfannkuch, M. (1999). Statistical Thinking in Empirical Enquiry. International Statistical Review 67 (3), 223-265.
- Zimmermann, G. (2002). Students’ reasoning about probability simulation during instruction. Doctoral Dissertation. Retrieved from https://www.stat.auckland.ac.nz/~iase/publications/dissertations/02.Zimmerman.Dissertation.pdf.
Downloads
Não há dados estatísticos.