Artículo Especial
Vol. 9 N.º 4 (2006): Número Especial/ Diciembre
LEARNING MATHEMATICS: INCREASING THE VALUE OF INITIAL MATHEMATICAL WEALTH
Department of Mathematics and Statistics University of North Carolina at Charlotte USA
-
Enviado
-
outubro 28, 2024
-
Publicado
-
2006-12-30
Resumo
Usando a teoria de signos de Charles Sanders Peirce, este artigo introduz a noção de riqueza matemática. A primeira secção argumenta a relação intrínseca entre a matemática, os aprendizes de matemáticas, e os signos matemáticos. A segunda, argumenta a relação triangular entre interpretação, objetivação e generalização. A terceira, argumenta como o discurso matemático é um potente meio na objetivação semiótica. A quarta seção argumenta como o discurso matemático na sala de aula adequar o aumento do valor da riqueza matemática do aluno, em forma sincrônica e diacrônica, quando ele inverte a construção de novos conceitos. A última seção discute como maestros, com diferentes perspectivas teóricas, influem na direção do discurso matemático na sala de aula e, conseqüentemente, no crescimento da riqueza matemática de sus estudantes.
Referências
- Austin, J. L. & Howson A. G. (1979). Language and mathematical education.Educational Studies in Mathematics, 10, 161-197.
- Bauersfeld, H. (1998). About the notion of culture in mathematics education. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom, (pp. 375- 389). Cambridge, UK: Cambridge University Press.
- Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer Academic Publishers. Bourdieu, P. (1991). Language and symbolic power. Cambridge, Massachusetts: Harvard University Press.
- Brousseau, G. (1997). Theory of didactical situations in mathematics. Edited by Nicolas Balacheff, Martin Cooper, Rosamund Sutherland, and Virginia Warfield. Dordrecht, The Netherlands: Kluwer Academic Press.
- Bruner, J. S. (1986). Actual minds, possible worlds. Cambridge, Massachusetts: Harvard University Press.
- Davis, P. J. & Hersh, R. (1981). The mathematical experience. Boston: Houghton Mifflin Company.
- Deacon, T. (1997). The symbolic species: The coevolution of language and the brain. New York: W. W. Norton & Company.
- Duval, R. (2006). The cognitive analysis of problems of comprehension in the learning of mathematics. In A. Sáenz-Ludlow, and N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 103-131.
- Ernest, P. (2006). A semiotic perspective of mathematical activity: The case of number. In A. Sáenz-Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 67-101.
- Gay, W. (1980). Analogy and metaphor. Philosophy and Social Criticism, 7(3-4), 299- 317.
- Habermas, J. (1984). The theory of communicative action. 2. Boston: Beacon Press.
- Halliday, M. A. K. (1978). Language as social semiotics. London: Arnold. National Council of Teachers of Mathematics (2000). Principles and Standards of School Mathematics. Reston, Virginia: National Council of Teachers of Mathematics.
- Ongstad, S. (2006). Mathematics and mathematics education as triadic communication? In A. Sáenz-Ludlow, and N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 247-277.
- Parmentier, R. J. (1985). Signs’ place in medias res: Peirce’s concept of semiotic mediation. In E. Mertz & R.J. Parmentier (Eds.), Semiotic mediation (pp. 23-48). Orlando, Florida: Academic Press.
- Peirce, C. S. (1903). The three normative sciences. In The Essential Peirce, 2, (pp. 1893-1913) edited by The Peirce Edition Project, (pp. 196-207). Bloomington, Indiana: Indiana University Press.
- Peirce, C. S. (1956). The essence of mathematics. In James R. Newman (Ed.), The World of Mathematics, 3, (pp. 1773-1783), New York: Simon and Schuster.
- Peirce, C. S. (1974). Collected Paper (CP). C. Hartshorne, and P. Weiss (Eds.), 1-4. Cambridge, Massachusetts: Harvard University Press. (Reference is made to volumes and paragraphs).
- Peirce, C. S. (1976). The New Elements of Mathematics (NEP). Carolyn Eisele (Ed), 1- 4. The Hague: Mouton Publishers.
- Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 299-312). Mahwah, New Jersey: Lawrence Erlbaum Associates.
- Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to learners’ types of generalization. Mathematical Thinking and Learning, 5(1), 37-70.
- Radford, L. (2006a). The anthropology of meaning. In A. Sáenz-Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 39-65.
- Radford, L. (2006b). Glossary of internal document of the symposium of the Symbolic Cognition Group. Vermont, January 3-9, 2006.
- Radford, L. (in press). Semiótica cultural y cognición. In R. Cantoral & O. Covián (Eds.), Investigación en Matemática Educativa en Latinoamérica. México.
- Rossi-Landi, F. (1980). On linguistic money. Philosophy and Social Criticism, 7(3-4), 346-372.
- Rotman, B. (2000). Mathematics as sign. Stanford, California: Stanford University Press. Sáenz-Ludlow, A. (2003). A collective chain of signification in conceptualizing fractions. Journal of Mathematical Behavior, 22, 181-211.
- Sáenz-Ludlow, A. (2004). Metaphor and numerical diagrams in the arithmetical activity of a fourth-grade class. Journal for Research in Mathematics Education, 1(35), 34-56.
- Sáenz-Ludlow, A. (2006). Classroom interpreting games with an illustration. In A. Sáenz- Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 183- 218.
- Seeger, F. (1998). Discourse and beyond: On the ethnography of classroom discourse. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp.85-101). Reston, Virginia: National
- Sierpinska, A. (1998). Three epistemologies, three views of classroom communication: Constructivism, sociocultural approaches, interactionism. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 30-62). Reston, Virginia: National Council of Teachers of Mathematics.
- Skemp, R. (1987). The psychology of learning mathematics. Lawrence Erlbaum Associates.
- Steinbring, H., Bartolini Bussi, M. G., & Sierpinska, A. (Eds.) (1998). Language and communication in the mathematics classroom. Reston, Virginia: National Council of Teachers of Mathematics.
- Van Dormolen, J. (1986). Textual analysis. In B. Chirstiansen, A. G. howson, & M. Otte (Eds.), Perspectives on mathematics education, (pp. 141-171). Boston: B. Reidel Publishing Company.
- Vygotsky, L. S. (1987). Thinking and speech. New York: Plenum Press.
- White, L. A. (1956). The locus of mathematical reality: An anthropological footnote. In James R. Newman (Ed.), The World of Mathematics, 4, (pp. 2348-2364). New York: Simon and Schuster.
- Wilder, R. (1973/1968). Evolution of mathematical concepts. Milton Keyness, England:
- The Open University Press.
Downloads
Não há dados estatísticos.