Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículo Especial

Vol. 17 Núm. 4(I) (2014): Diciembre

QUEL ESPACE DE TRAVAIL GÉOMÉTRIQUE POUR L'APPRENTISSAGE DES PROPRIÉTÉS AU PRIMAIRE ?

DOI
https://doi.org/10.12802/relime.13.1746
Enviado
julio 5, 2023
Publicado
2014-12-30

Resumen

Esta colaboración analiza el uso de un programa de geometría dinámica en los últimos grados de primaria (9-12 años) para el aprendizaje de propiedades por medio de la modelización de las actividades de los alumnos en espacio de trabajo geométrico. Esta modelización realza las relaciones entre las diferentes génesis y particularmente la génesis instrumental ligada al instrumento desplazamiento, correlativo a la génesis video - figural ligada a la visualización de figuras.

Citas

  1. Assude, T. & Gélis, J-M. (2002). La dialectique ancien - nouveau dans l’intégration de Cabri à l’école primaire. Educational Studies of Mathematics, 50, 259-287.
  2. Braconne - Michoux, A. (2008). Évolution des conceptions et de l’argumentation en géométrie chez les élèves : paradigmes et niveaux de van Hiele à l’articulation CM2-6e. Thèse de Doctorat, Université Paris Diderot - Paris 7, France.
  3. Coutat, S. (2012). Vers une évolution de la vision en géométrie au primaire avec un logiciel de géométrie dynamique. Math - Ecole, 218, 50-55.
  4. Coutat, S. & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques. Annales de didactique et de sciences cognitives, 16, 97-126.
  5. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie. Annales de Didactique et de sciences cognitives, 10, 5-53.
  6. Duval, R. & Godin, M. (2005). Les changements de regard nécessaires sur les figures. Grand N, 76, 7-27.
  7. Houdement, C. & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de Didactique et de Sciences Cognitives, 11, 175-193.
  8. Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses. Annales de didactique et de sciences cognitives, 16, 9-24.
  9. Kuzniak, A. & Richard, P. R., (2014). Espaces de Travail Mathématiques. Points de vue et perspectives. Revista Latinoamericana de Investigación en Matemática Educativa, 17 (Número Especial TOMO I), pp. 29-39.
  10. Laborde, C. & Capponi, B. (1994). Cabri - Géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherches en Didactique des Mathématiques, 14 (1.2), 165-210.
  11. Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle. Thèse de Doctorat, Université Joseph Fourier, Grenoble.
  12. Offre, B., Perrin - Glorian, M.-J., Verbaere, O. (2006). Usage des instruments et des propriétés géométriques en fin de CM2. Petit x, 72, 6-39.
  13. Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains. Paris, France : Armand Colin.
  14. Restrepo, A. (2008) Genèse instrumentale du déplacement en géométrie dynamique chez des élèves de 6ième. Thèse de Doctorat, Université Joseph Fourier, Grenoble.
  15. Van Hiele, .P. M., van Hiele - Geldof, D. (1958). A method of initiation into Geometry at secondary school. Report on Methods of Initiation into Geometry, in Freudenthal, H., Learning and Understanding in Mathematics, a Tribute to Richard Skemp, 27-47.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

También puede {advancedSearchLink} para este artículo.