Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 22 Núm. 3 (2019): Noviembre

MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES: PROCEDIMIENTOS DE DESARROLLO Y EVALUACIÓN DE LA COGNICIÓN NUMÉRICA

DOI
https://doi.org/10.12802/relime.19.2234
Enviado
noviembre 6, 2022
Publicado
2019-11-15

Resumen

El número y sus operaciones básicas se pueden conceptualizar dentro de un sistema general de relaciones. Los niños necesitan construir un sistema de números dentro del cual puedan sumar, restar, multiplicar y dividir cualquier número racional. Los productos y los cocientes se pueden definir en términos de esquemas relacionales generales. En este estudio, examinamos si los niños de escuela primaria pueden construir un sistema de números tal que la multiplicación y división de fracciones se basan en la construcción de esquemas relacionales generales. Los grupos de estudiantes no son homogéneos y los niños progresan a diferentes ritmos. Para una evaluación confiable, los maestros necesitan métodos para examinar las diferencias individuales y de desarrollo en las representaciones cognitivas de los conceptos y operaciones matemáticos. Una curva de regresión logística ofrece una visualización del proceso de aprendizaje como una función de las notas promedio. El análisis de elementos de multiplicación y división de fracciones muestra una mejora en la probabilidad de respuesta correcta, especialmente para estudiantes con una calificación promedio más alta.

Citas

  1. Baker, F. B. (2001). The Basics of Item Response Theory. 2nd ed. ERIC Clearinghouse on Assessment and Evaluation.
  2. Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2015). Children’s mathematics: Cognitively guided instruction. 2nd ed. Portsmouth, NH: Heinemann.
  3. Chen, Z., & Siegler, R. S. (2000). Across the great divide: Bridging the gap between understanding of toddlers’ and older children’s thinking. Monographs of the Society for Research in Child Development, 65, v–96.
  4. DeVellis, R. F. (2017) Scale Development. Theory and Applications. 4th ed. Thousand Oaks, CA: SAGE.
  5. Díaz-Cárdenas, A. F., Sankey-García, M. R., Díaz-Furlong, A., Díaz-Furlong, H. A. (2014) Educación por competencias y desarrollo social del procesamiento cognitivo. In Patiño Tovar, H. y López Cortés, A. (comp.) Prevención y Evaluación en Psicología. (pp. 75 – 97). México: Manual Moderno.
  6. Díaz-Furlong, H. A., Díaz-Cárdenas, A. F., Díaz-Furlong, A. (Eds.) (2017). Literacy and cognition: Development and learning. Berlin: Verlag/Publisher. LAP Lambert Academic Publishing.
  7. Empson, S. B., Levi, L., and Carpenter T. P. (2011). The Algebraic Nature of Fractions: Developing Relational Thinking in Elementary School. In J. Cai, E. Knuth (Eds.). Early Algebraization, Advances in Mathematics Education, pp. 409 – 428. Springer-Verlag Berlin Heidelberg. doi 10.1007/978-3-642-17735-4_22
  8. Fazio, L. K. & Siegler, R. S. (2013). Microgenetic Learning Analysis: A Distinction without a Difference. Human Development, 56: 52 – 58. doi: 10.1159/000345542.
  9. Gergen, K. J. (2001). From mind to relationship: The emerging challenge. Education CanadaToronto-, 41(1): 8 -11.
  10. Gergen, K. J. (2009). Pragmatics and pluralism in explaining human action. Behavior and Philosophy, 37, 127-133.
  11. Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice Teachers’ Misconceptions in Solving Verbal Problems in Multiplication and Division. Journal for Research in Mathematics Education, 20 (1), 95 – 102.
  12. Kline, R. B. (2009). Becoming a behavioral science researcher: a guide to producing research that matters. New York: The Guilford Press.
  13. Kline, R. B. (2013). Beyond significance testing : statistics reform in the behavioral sciences. 2nd ed. Washington, D.C.: American Psychological Association
  14. Lamon, S. J. (2005). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. 2nd ed. Mahwah, N. J.: Lawrence Erlbaum Associates, Inc., Publishers.
  15. Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201 – 221. doi: 10.1016/j.dr.2015.07.008
  16. Musser, G.L., Burger, W.F., & Peterson, B. E. (2008). Mathematics for elementary teachers: A contemporary approach. 8th ed. Jefferson City: John Wiley & Sons.
  17. National Academies of Sciences, Engineering, and Medicine. (2018). How People Learn II: Learners, Contexts, and Cultures. Washington, D.C.: The National Academies Press. doi: https://doi.org/10.17226/24783
  18. oecd (2016). pisa 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. Paris: oecd Publishing. doi: 10.1787/9789264255425-en
  19. Pardo, A., Ruiz, M. A., & San Martín, R. (2009). Análisis de datos en ciencias sociales y de la salud I. Madrid: Editorial Síntesis.
  20. Pardo, A., & Ruiz, M. A. (2012). Análisis de datos en ciencias sociales y de la salud III. Madrid: Editorial Síntesis.
  21. Pardo, A., & San Martín, R. (2010). Análisis de datos en ciencias sociales y de la salud II. Madrid: Editorial Síntesis.
  22. Piaget, J. (1952). The Child’s Conception of Number. London: Routledge and Kegan Paul Ltd.
  23. Piaget, J. (1975). L’Équilibration des Structures Cognitves. Paris: Presses Universitaires de France.
  24. Piaget, J., & Inhelder, B. (1958). The Growth of Logical Thinking from Childhood to Adolescence. New York: Basil Books, Inc.
  25. Rogers, T. T. & McClelland, J. L. (2004). Semantic cognition. A parallel distributed processing approach. Cambridge, MA: The MIT press. Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray,
  26. J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE #2010-4039). Washington, D.C.: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from whatworks.ed.gov/ publications/practiceguides.
  27. Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273–296. http://dx.doi.org/10.1016/j.cogpsych.2011.03.001
  28. Siegler, R. S. and Lortie-Forgues, H. (2015) Conceptual Knowledge of Fraction Arithmetic. Journal of Educational Psychology, 107, (3), 909 – 918. http://dx.doi.org/10.1037/edu0000025
  29. Siegler, R. S., & Chen, Z. (1998) Developmental differences in rule learning: A microgenetic analysis. Cognitive Psychology, 36, 273 – 310. doi: 10.1006/cogp.1998.0686
  30. Simona, M. A., Placab, N., Avitzurc, A. & Karad, M. (2018). Promoting a concept of fractionas-measure: A study of the Learning Through Activity research program. Journal of Mathematical Behavior, 52: 122 – 133. doi: 10.1016/j.jmathb.2018.03.004
  31. Torbeyns, J., Schneider, M, Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents Learning and Instruction, 37, 5 -13. doi: 10.1016/j.learninstruc.2014.03.002
  32. Vygotsky L. S. (1986) Thought and language. Cambridge, MA: The MIT Press.
  33. Wu, M. (2013) Using Item Response Theory as a Tool in Educational Measurement. In M. Mo Ching Mok (ed.), Self-directed Learning Oriented Assessments in the Asia-Pacific, Education in the Asia-Pacific Region: Issues, Concerns and Prospects 18. (pp.: 157 – 185), Dordrecht: Springer. DOI 10.1007/978-94-007-4507-0_9
  34. Zapatera Llinares, A. (2017). Cómo alumnos de educación primaria resuelven problemas de generalización de patrones. Una trayectoria de aprendizaje. Revista Latinoamericana de Investigación en Matemática Educativa 20 (3): 87 - 114. doi: 10.12802/relime.18.2114

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.