Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 3 Núm. 1 (2000): Marzo

CONCEPCIONES DE LOS ALUMNOS DE BACHILLERATO Y CURSO DE ORIENTACIÓN UNIVERSITARIA SOBRE LÍMITE FUNCIONAL Y CONTINUIDAD

Enviado
marzo 23, 2025
Publicado
2000-03-31

Resumen

Para establecer las concepciones de los alumnos de Bachillerato y Curso de Orientación Universitaria (C.O.U.) sobre el límite funcional y la continuidad, se han analizado y categorizado las justificaciones utilizadas por 145 sujetos al contestar un cuestionario con tareas en las que estaban involucrados dichos conceptos. Se ha constatado que algunas de estas con-cepciones están relacionadas con las que han aparecido a lo largo de la historia de las matemáti-cas, y que otras están inducidas por la enseñanza recibida.

Citas

  1. Artigue, M. (1995). La enseñanza de los principios del cálculo: problemas epistemológicos, cognitivos y didácticos En Artigue, M. y otros (eds.) Ingeniería didáctica en educación matemática, 97-140. Grupo Editorial Iberoamérica. México.
  2. Confrey, J. (1990). A revue of the research on student conceptions in mathematics, science and programming Revue on Research Education, 16, 3-55.
  3. Cornu, B. (1981). Apprentissage de la notion de limite. Modeles spontanes et modeles propes. Proceedings of the Fifth Conference of International Group of Psychology of Mathematics Education, 322-326
  4. Cornu, B. (1983). Quelques obstacles a l'apprentissage de la notion de limite Recherches en Didactique des Mathématiques 4(2), 236-268.
  5. Davis, R.B. y Vinner, S. (1986). The notion of limit: some seemingly unavoidable misconception stages The Journal of Mathematical Behavoir 5, 281-303
  6. El Bouazzoui, H. (1988). Conceptions des éleves et des professeurs a propos de la notion de continuité d'une fonction. Theses du grade de Ph.D. Université Laval.
  7. Janvier. C. (1987), Representation and Understanding: The notion of function as an exam-ple. En C. Janvier (ed.) Problems of representation inthe teaching and learning of mathematics. Londres: LEA Publications.
  8. Robert, A. (1983), L'acquisition de la notion de convergence des suites numériques dans l'en-seignement supérieur. Recherches en Didactique des Mathématiques, 3(3), 307-341.
  9. Ruiz Higueras, L. (1993). Concepciones de los alumnos de secundaria sobre la noción de función. Análisis epistemológico y didáctico. Universidad de Granada. (Tesis doctoral inédita).
  10. Schubring, G. (1987). On the Methodology of Analysing Historical Textbooks: Lacroix as Textbook Author. For the learning of mathematics, 7(3), 41-51.
  11. Sierpinska, A. (1985). Obstacles epistémologiques relatifs a la notion de limite. Recherches en Didactique des Mathématiques, 6(1), 5-67.
  12. Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics. 18, 371-397.
  13. Sierra, M., González, M.T. y López, C. (1997). Los conceptos de límite y continuidad en la educación secundaria: transposición didáctica y concepciones de los alumnos. Universidad de Salamanca (Documento inédito).
  14. Tall, D. (1980). Mathematical Intuition with special reference to limiting processes. Proceedings of the Fourth International Conference for the Psychology of Mathematics Education. 170-176.
  15. Tall, D. y Vinner, S, (1981). Concept image and concept definition with particular reference to limits and continuity. Educational Studies in Mathematics. 12, 151-169.
  16. Thompson, A.G. (1992). Teachers' Beliefs and Conceptions: A Sythesis of Research, En Grows (ed.) Handbook of Research on Mathematics Teaching and Learning. Nueva York: MacMillan Publishing Company.
  17. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactiques des Mathématiques, 10(23), 133-170.
  18. Williams, S. (1991). Models of limit held by college calculus students. Journal for Research in Mathematics Education, 22, 219-236.

Descargas

Los datos de descargas todavía no están disponibles.