Artículos
Vol. 20 No. 2 (2017): Julio
ARITHMETIC - ALGEBRAIC PROBLEM SOLVING AND LEARNING STRATEGIES IN MATHS. AN STUDY IN SECONDARY EDUCATION
Universidad del País Vasco - Euskal Herriko Unibertsitatea
Abstract
One of the essential blocks of teaching and learning mathematics consists of word problems and their resolution; learning strategies encourage autonomy and can help make decisions in this mathematical task. This study aims to relate the way to solve problems with the use of these strategies. The research is done with students of secondary school 8 th , 9 th and 10 th grade. Students are categorized into three groups: the group of algebraic resolution, mixed resolution and the group without defined profile. Learning strategies are measured by a questionnaire. The algebraic group outperforms mixed in various strategies, especially in those metacognitives. The group without defined profile uses less all strategies except rehearsal.
References
- Ahmed, W., van der Werf, G., Kuyper, H. & Minnaert, A. (2013). Emotions, self - regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105 (1), 150-161. doi: 10.1037/a0030160
- Areepattamannil, S. & Caleon, I. S. (2013). Relationships of cognitive and metacognitive learning strategies to mathematics achievement in four high - performing East Asian education systems. The Journal of genetic psychology, 174 (6), 696-702. doi: 10.1080/00221325.2013.799057
- Badia, A., Álvarez, I., Carretero, R., Liesa, E., & Becerril, L. (2012). Del aprendiz estratégico al aprendiz competente. En Estrategias y competencias de aprendizaje en educación (pp. 17-38). Madrid: Editorial Síntesis.
- Balam, E. (2015). Learning Strategies and Motivation of Graduate Students: Is Gender a factor. Institute for Learning Styles Journal, 1, 1-9.
- Baroody, A., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38 (2), 115-131.
- Bednarz, N., & Janvier, B. (1996). Emergence and development of algebra as a problem- solving tool: continuities and discontinuities with arithmetic. En N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra, perspectives for research and teaching (pp. 115-136).
- Dordrecht: Kluwer.
- Berger, J. & Karabenick, S.A. (2011). Motivation and student’s use of learning strategies: Evidence of unidirectional effects in mathematics classroom. Learning and Instruction, 21 (3), 416-428. doi: 10.1016/j.learninstruc.2010.06.002
- BOPV (2007). Currículo de matemáticas en la ESO. Boletín Oficial del País Vasco, suplemento n.º 218. Obtenido de http://www.euskadi.eus
- BOPV (2016). Currículo de Educación Básica. Boletín Oficial del País Vasco, nº 9, 2016 / 141. Obtenido de http://www.euskadi.eus
- Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40 (1), 3-22. doi: 10.1007/s11858-007-0067-7
- Chen, Z. (1999). Schema induction in children’s analogical problem solving. Journal of Educational Psychology, 91 (4), 703-715. doi: 10.1037/0022-0663.91.4.703
- Chiu, M. M., Wing - Yin, B., & McBride - Chang, C. (2007). Universals and specifics in learning strategies: Explaining adolescent mathematics, science, and reading achievement across 34 countries. Learning and Individual Differences, 17, 344-365. doi: 10.1016/j.lindif.2007.03.007
- Czuchry, M. & Dansereau, D. F. (1998). The generation and recall of personally relevant information. The Journal of experimental education, 66 (4), 293-315. doi: 10.1080/00220979809601403
- Davidson, J. E. & Sternberg, R. J. (1998). Smart problem solving: How metacognition helps. Metacognition in educational theory and practice (pp. 47-68). New Jersey: LEA.
- Deulofeu, J., Figueiras, L., & Pujol, R. (2011). De lo previsible a lo inesperado en un contexto de resolución de problemas. Uno, 58, 84-97.
- Efklides, A. (2001). Metacognitive experiences in problem solving: Metacognition, motivation, and self - regulation. En A. Efklides, J. Kuhl, y R. M. Sorrentino (Eds.), Trends and prospects in motivation research (pp. 297-323). Dodrecht: The Netherlands, Kluwer. doi:10.1007/0-306-47676-2_16
- Lai, K., Griffin, P., Mak, A., Wu, M., & Dulhunty, M. (2001). Modelling strategies in problem solving. Texto presentado en Annual Conference of the Australian Association for Research in Education. Perth, Australia.
- Liu, O. L. (2009). Evaluation of a learning strategies scale for middle school students. Journal of Psychoeducational Assessment, 27 (4), 312-322.
- doi: 10.1177/0734282908327935
- Mayer, R. (1986). Pensamiento, resolución de problemas y cognición. Barcelona: Paidós.
- McAfee, O. & Leong, D. J. (1994). Assessing and guiding young children’s development and learning. Boston: Allyn & Bacon.
- Murayama, K., Pekrun, R., Lichtenfeld, S., & Vom Hofe, R. (2013). Predicting long - term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84 (4), 1475-1490. doi: 10.1111/cdev.12036
- NCTM - National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
- Núñez Pérez, J. C., González Pienda, J. A., García Rodríguez, M., González Pumariega, S., Roces Montero, C., Álvarez Pérez, L., & González Torres, M. D. C. (1998). Estrategias de aprendizaje, autoconcepto y rendimiento académico. Psicothema, 10 (1), 97-111.
- Pape, S. J. (2004). Middle school children’s problem - solving behavior: A cognitive analysis from a reading comprehension perspective. Journal for Research in Mathematics Education, 35 (3), 187-219. doi: 10.2307/30034912
- Perels, F., Gürtler, T., & Schmitz, B. (2005). Training of self - regulatory and problem - solving competence. Learning and Instruction, 15, 123-139. doi:10.1016/j.learninstruc.2005.04.010
- Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53, 801-813. doi: 10.1177/0013164493053003024
- Puteh, M. & Ibrahim, M. (2010). The usage of self - regulated learning strategies among form four students in the mathematical problem - solving context: a case study. Procedia: Social and Behavioral Sciences, 8, 446-452. doi: 10.1016/j.sbspro.2010.12.061
- Radford, L. (2011). Grade 2 student’s non - symbolic algebraic thinking. En Early algebraization (pp. 303-322). Springer Berlin Heidelberg.
- doi: 10.1007/978-3-642-17735-4_17
- Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26 (2), 257-277. doi: 10.1007/s13394-013-0087-2
- Scheiter, K., Gerjets, P. & Schuh, J. (2010). The acquisition of problem - solving skills in mathematics: How animations can aid understanding of structural problem features and solution procedures. Instructional Science, 38 (5), 487-502. doi: 10.1007/s11251-009-9114-9
- Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26 (3-4), 299-323. doi: 10.1207/s15326985ep2603&4_5
- Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. En E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 361–379). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Stacey, K. & MacGregor M. (1999). Learning the algebraic method of solving problems. Journal of Mathematical Behaviour, 18 (2), 149-167. doi: 10.1016/s0732-3123(99)00026-7
- Thiessen, V. & Blasius, J. (2008). Mathematics achievement and mathematics learning strategies: Cognitive competencies and construct differentiation. International Journal of Educational Research, 47, 362-371. doi: 10.1016/j.ijer.2008.12.002
- Van Amerom, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra.Educational Studies in Mathematics, 54 (1), 63-75. doi: 10.1023/b:educ.0000005237.72281.bf