Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 20 N.º 2 (2017): Julio

LA RESOLUCIÓN DE PROBLEMAS ARITMÉTICO - ALGEBRAICOS Y LAS ESTRATEGIAS DE APRENDIZAJE EN MATEMÁTICAS. UN ESTUDIO EN EDUCACIÓN SECUNDARIA OBLIGATORIA (ESO)

DOI
https://doi.org/10.12802/relime.17.2022
Enviado
junho 29, 2023
Publicado
2017-07-31

Resumo

Um dos blocos essenciais de ensino e aprendizagem da matemática consiste em problemas de palavra e sua resolução; estratégias  de aprendizagem incentivar autonomia e pode ajudar a tomar decisões nesta tarefa matemática. Este estudo tem por objetivo  relacionar o caminho para resolver problemas com o uso dessas estratégias. A pesquisa é feita com alunos de 8º do ensino  secundário, 9º e 10º grau. Os alunos são classificados em três grupos: o grupo de resolução algébrica, resolução mista e do grupo  sem perfil definido. Estratégias de aprendizagem são medidas através de um questionário. O grupo algébrico supera misto em  várias estratégias, especialmente naqueles metacognitivas. O grupo sem perfil definido usa menos todas as estratégias exceto  ensaio.

Referências

  1. Ahmed, W., van der Werf, G., Kuyper, H. & Minnaert, A. (2013). Emotions, self - regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105 (1), 150-161. doi: 10.1037/a0030160
  2. Areepattamannil, S. & Caleon, I. S. (2013). Relationships of cognitive and metacognitive learning strategies to mathematics achievement in four high - performing East Asian education systems. The Journal of genetic psychology, 174 (6), 696-702. doi: 10.1080/00221325.2013.799057
  3. Badia, A., Álvarez, I., Carretero, R., Liesa, E., & Becerril, L. (2012). Del aprendiz estratégico al aprendiz competente. En Estrategias y competencias de aprendizaje en educación (pp. 17-38). Madrid: Editorial Síntesis.
  4. Balam, E. (2015). Learning Strategies and Motivation of Graduate Students: Is Gender a factor. Institute for Learning Styles Journal, 1, 1-9.
  5. Baroody, A., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38 (2), 115-131.
  6. Bednarz, N., & Janvier, B. (1996). Emergence and development of algebra as a problem- solving tool: continuities and discontinuities with arithmetic. En N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra, perspectives for research and teaching (pp. 115-136).
  7. Dordrecht: Kluwer.
  8. Berger, J. & Karabenick, S.A. (2011). Motivation and student’s use of learning strategies: Evidence of unidirectional effects in mathematics classroom. Learning and Instruction, 21 (3), 416-428. doi: 10.1016/j.learninstruc.2010.06.002
  9. BOPV (2007). Currículo de matemáticas en la ESO. Boletín Oficial del País Vasco, suplemento n.º 218. Obtenido de http://www.euskadi.eus
  10. BOPV (2016). Currículo de Educación Básica. Boletín Oficial del País Vasco, nº 9, 2016 / 141. Obtenido de http://www.euskadi.eus
  11. Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40 (1), 3-22. doi: 10.1007/s11858-007-0067-7
  12. Chen, Z. (1999). Schema induction in children’s analogical problem solving. Journal of Educational Psychology, 91 (4), 703-715. doi: 10.1037/0022-0663.91.4.703
  13. Chiu, M. M., Wing - Yin, B., & McBride - Chang, C. (2007). Universals and specifics in learning strategies: Explaining adolescent mathematics, science, and reading achievement across 34 countries. Learning and Individual Differences, 17, 344-365. doi: 10.1016/j.lindif.2007.03.007
  14. Czuchry, M. & Dansereau, D. F. (1998). The generation and recall of personally relevant information. The Journal of experimental education, 66 (4), 293-315. doi: 10.1080/00220979809601403
  15. Davidson, J. E. & Sternberg, R. J. (1998). Smart problem solving: How metacognition helps. Metacognition in educational theory and practice (pp. 47-68). New Jersey: LEA.
  16. Deulofeu, J., Figueiras, L., & Pujol, R. (2011). De lo previsible a lo inesperado en un contexto de resolución de problemas. Uno, 58, 84-97.
  17. Efklides, A. (2001). Metacognitive experiences in problem solving: Metacognition, motivation, and self - regulation. En A. Efklides, J. Kuhl, y R. M. Sorrentino (Eds.), Trends and prospects in motivation research (pp. 297-323). Dodrecht: The Netherlands, Kluwer. doi:10.1007/0-306-47676-2_16
  18. Lai, K., Griffin, P., Mak, A., Wu, M., & Dulhunty, M. (2001). Modelling strategies in problem solving. Texto presentado en Annual Conference of the Australian Association for Research in Education. Perth, Australia.
  19. Liu, O. L. (2009). Evaluation of a learning strategies scale for middle school students. Journal of Psychoeducational Assessment, 27 (4), 312-322.
  20. doi: 10.1177/0734282908327935
  21. Mayer, R. (1986). Pensamiento, resolución de problemas y cognición. Barcelona: Paidós.
  22. McAfee, O. & Leong, D. J. (1994). Assessing and guiding young children’s development and learning. Boston: Allyn & Bacon.
  23. Murayama, K., Pekrun, R., Lichtenfeld, S., & Vom Hofe, R. (2013). Predicting long - term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84 (4), 1475-1490. doi: 10.1111/cdev.12036
  24. NCTM - National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
  25. Núñez Pérez, J. C., González Pienda, J. A., García Rodríguez, M., González Pumariega, S., Roces Montero, C., Álvarez Pérez, L., & González Torres, M. D. C. (1998). Estrategias de aprendizaje, autoconcepto y rendimiento académico. Psicothema, 10 (1), 97-111.
  26. Pape, S. J. (2004). Middle school children’s problem - solving behavior: A cognitive analysis from a reading comprehension perspective. Journal for Research in Mathematics Education, 35 (3), 187-219. doi: 10.2307/30034912
  27. Perels, F., Gürtler, T., & Schmitz, B. (2005). Training of self - regulatory and problem - solving competence. Learning and Instruction, 15, 123-139. doi:10.1016/j.learninstruc.2005.04.010
  28. Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1993). Reliability and predictive validity of the motivated strategies for learning questionnaire (MSLQ). Educational and Psychological Measurement, 53, 801-813. doi: 10.1177/0013164493053003024
  29. Puteh, M. & Ibrahim, M. (2010). The usage of self - regulated learning strategies among form four students in the mathematical problem - solving context: a case study. Procedia: Social and Behavioral Sciences, 8, 446-452. doi: 10.1016/j.sbspro.2010.12.061
  30. Radford, L. (2011). Grade 2 student’s non - symbolic algebraic thinking. En Early algebraization (pp. 303-322). Springer Berlin Heidelberg.
  31. doi: 10.1007/978-3-642-17735-4_17
  32. Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26 (2), 257-277. doi: 10.1007/s13394-013-0087-2
  33. Scheiter, K., Gerjets, P. & Schuh, J. (2010). The acquisition of problem - solving skills in mathematics: How animations can aid understanding of structural problem features and solution procedures. Instructional Science, 38 (5), 487-502. doi: 10.1007/s11251-009-9114-9
  34. Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26 (3-4), 299-323. doi: 10.1207/s15326985ep2603&4_5
  35. Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. En E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 361–379). Hillsdale, NJ: Lawrence Erlbaum Associates.
  36. Stacey, K. & MacGregor M. (1999). Learning the algebraic method of solving problems. Journal of Mathematical Behaviour, 18 (2), 149-167. doi: 10.1016/s0732-3123(99)00026-7
  37. Thiessen, V. & Blasius, J. (2008). Mathematics achievement and mathematics learning strategies: Cognitive competencies and construct differentiation. International Journal of Educational Research, 47, 362-371. doi: 10.1016/j.ijer.2008.12.002
  38. Van Amerom, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra.Educational Studies in Mathematics, 54 (1), 63-75. doi: 10.1023/b:educ.0000005237.72281.bf

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.