Artículos
Vol. 7 No. 1 (2004): Marzo
A DIDACTIC EXPERIENCE ON FUNCTIONS, IN THE SECONDARY SCHOOL
Department of Mathematics, University of Roma "La Sapienza" Piazzale Aldo Moro 2, I-00185 Roma (Italy)
-
Submitted
-
December 22, 2024
-
Published
-
2004-03-31
Abstract
In this paper, some aspects of the ideas of real function, continuous function, domain of a function and integral are investigated in the learning of mathematics, mainly referred to Italian High School (pupils aged 16-19 years); the status of these concepts in classroom practice is studied by some tests. The role of representations is important in the learning of mathematics; in particular, the influence of visualization is studied: the graphic representation (namely the Cartesian representation of a function) is often tacitly considered the main act of the study of a mathematical function; this procedure may be ineffective for the correct characterization of a concept and for the full development of the ability to use and to co-ordinate registers of representation.
References
- Apostol, T.M. (1977). Calcolo: I, Boringhieri, Torino (Calculus, 2nd edition, John Wiley & Sons, New York 1969).
- Arcavi, A.; Tirosh, D. & Nachmias, R.(1989). The effects of exploring a new representation on prospective teachers’ conception of functions: Vinner, S. (Ed.) Science and mathematics teaching: Interaction between research and practice, Hebrew University, Jerusalem.
- Bagni, G.T. (1995). Sul compito di matematica dell’esame di maturità scientifica 1995: La matematica e la sua didattica 4, 520-521.
- Bagni, G.T. (1997). Dominio di una funzione, numeri reali e numeri complessi. Esercizi standard and contratto didattico nella scuola secondaria superiore: La matematica e la sua didattica 3, 306-319.
- Bagni, G.T. (1998) Visualization and didactics of mathematics in High School: an experimental research: Scientia Paedagogica Experimentalis 35, 1, 161-180.
- Bagni, G.T. (2000). «Simple» rules and general rules in some High School students’ mistakes: Journal fur Mathematik Didaktik 21, 2, 124-138.
- Bergeron, J.C. & Herscovics, N. (1982). Levels in the understanding of the function concept: Workshop on functions by the Foundation for curriculum development, Enschede.
- Bottazzini, U.; Freguglia, P. & Toti Rigatelli, L. (1992). Fonti per la storia della matematica: Sansoni, Firenze.
- Bourbaki, N. (1963). Elementi di storia della matematica: Feltrinelli, Milano (Eléments d’histoire des mathematiques, Hermann, Paris 1960).
- Bourbaki, N. (1966). Eléments de mathématiques, Théorie des Ensembles, II, Hermann, Paris.
- Castelnuovo, G. (1938). Le origini del calcolo infinitesimale: Zanichelli, Bologna (reprint: Feltrinelli, Milano 1962).
- D’Amore, B. (1999). Elementi di didattica della matematica: Pitagora, Bologna.
- Davis, R.B. (1982). Teaching the concept of function: method and reasons: Workshop on functions by the Foundation for curriculum development, Enschede.
- Dini, U. (1878). Fondamenti per la teorica delle funzioni di variabile reale: Nistri, Pisa (reprint: UMI, Firenze 1990).
- Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking, Tall, D. (Ed.), Advanced Mathematical Thinking, Kluwer Academic Publishers, 95-126.
- Duval, R. (1993). Registres de répresentation sémiotique et fonctionnement cognitif de la pensée: Annales de Didactique et de Sciences Cognitives 5, IREM, Strasbourg.
- Duval, R. (1995a). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels, Peter Lang, Paris.
- Duval, R. (1995b). Quel cognitif retenir en didactique des mathématiques?: Actes de l’École d’ètè (La matematica e la sua didattica 3, 1996, 250-269).
- Euler, L. (1796). Introduction a l’Analyse infinitésimale: Barrois, Paris (1st French edition).
- Fischbein, E. (1993). The theory of figural concepts: Educational Studies in Mathematics 24, 139-162.
- Frege, G. (1973). Senso e denotazione: Bonomi, A. (Ed.), La struttura logica del linguaggio, Bompiani, Milano 9-32.
- Furinghetti, F. & Radford, L. (2002). Historical conceptual developments and the teaching of mathematics: from philogenesis and ontogenesis theory to classroom practice. English, L. (Ed.), Handbook of International Research in Mathematics Education, 631-654, Lawrence Erlbaum, New Jersey.
- Gelbaum, B.R. (1961). Advanced calculus: Appleton-Century-Crofts, New York.
- Gelbaum, B.R. (1962). The real number system: Appleton-Century Crofts, New York.
- Giusti, E.: 1983, Analisi Matematica 1: Boringhieri, Torino.
- Gray, E. & Tall, D. (1994). Duality, ambiguity, and flexibility: A perceptual view of simple arithmetics, Journal for Research in Mathematics Education, 27 (2), 116-140.
- Grugnetti, L. & Rogers, L. (2000). Philosophical, multicultural and interdisciplinary issues. In Fauvel, J. & van Maanen, J. (Eds.), History in Mathematics Education. The ICMI Study, 39-62, Dodrecht, Kluver.
- Hairer, E. & Wanner, G. (1996). Analysis by its History: Springer-Verlag, New York.
- Harel, G. & Dubinsky, E. (Eds.). (1992). The concept of Function: aspects of Epistemology and Pedagogy: MAA Notes 25.
- Harel, G. & Kaput, J. (1991). The Role of Conceptual Entities and Their Symbols in Building Advanced Mathematical Concepts: Tall, D. (Ed.), Advanced Mathematical Thinking, Kluwer Academic Publishers, Dodrecht, 82-94.
- Kaput, J. (1989a). Linking Representations in the Symbol Systems of Algebra: Kieran, C. & Wagner, S. (Eds.), Research Agenda for Mathematics Education: Research Issues in the Learning and Teaching of Algebra, Lawrence Erlbaum Publishers, Hillsdale, 167-194.
- Kaput, J. (1989b). Linking representations in the symbol systems of algebra: Wagner, S. & Kieran, C. (Eds.), Research issues in the learning and teaching of algebra, National Council of Teachers of Mathematics, Reston, 167-181.
- Kline, M. (1972). Mathematical thought from ancient to modern times: Oxford University Press, New York.
- Lakoff, G. & Nuñez, R. (2000). Where Mathematics come from? How the Embodied Mind Brings Mathematics into Being, Basic Books, New York.
- Malara, N.A. (1997). Problemi di insegnamento-apprendimento nel passaggio dall’aritmetica all’algebra: La matematica e la sua didattica, 2, 176-186.
- Markovitz, Z.; Eylon, B. & Bruckheimer, N. (1986). Functions today and yesterday: For the learning of mathematics 6 (2), 18-24.
- Norman, A. (1992). Teachers’ Mathematical Knowledge of the Concept of Function: Dubinsky, E. & Harel, G. (Eds.), The concept of Function: aspects of Epistemology and Pedagogy, MAA Notes 25, 215-232.
- Radford, L. (1997). On Psychology, Historical Epistemology and the Teaching of Mathematics: Towards a Socio-Cultural History of Mathematics, For the Learning of Mathematics, 17(1), 26-33.
- Schwingendorf, K.; Hawks, J. & Beineke, J. (1992). Horizontal and Vertical Growth of the Student’s Conception of Function: Dubinsky, E. & Harel, G. (Eds.), The concept of Function: aspects of Epistemology and Pedagogy, MAA Notes 25, 133-149.
- Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coins: Educational Studies in Mathematics 22, 1-36.
- Slavit, D. (1997). An alternate route to reification of function, Educational Studies in Mathematics 33, 259-281.
- Smith, D.E. (1959). A source book in Mathematics: Dover, New York (McGraw-Hill, 1929).
- Stavy, R. & Tirosh, D. (1996). Intuitive rules in science and mathematics: the case of ‘More of A More of B’: International Journal for Science Education. 18.6, 553-667.
- Tall, D. (1990). Inconsistencies in the learning of Calculus and Analysis: Focus on Learning Problems in Mathematics 12, 49-64.
- Tirosh, D. (1990). Inconsistencies in students’ mathematical constructs: Focus on Learning Problems in Mathematics 12, 111-129.
- Tirosh, D. (Ed.). (1994). Implicit and explicit knowledge: an educational approach: Ablex Publishing Corp., Norwood.
- Vinner, S. (1983). Concept definition, concept image and the notion of function: International Journal for Mathematical Education in Science and Technology 14, 3, 293-305.
- Vinner, S. (1987). Continuous functions-images and reasoning in College students: Proceedings PME 11, II, Montreal, 177-183.
- Vinner, S. (1992). Function concept as prototype for problems in mathematics: Dubinsky, E. & Harel, G. (Eds.), The concept of Function: aspects of Epistemology and Pedagogy, MAA Notes 25, 195-213.