Skip to main navigation menu Skip to main content Skip to site footer

Special Article

Vol. 17 No. 4(I) (2014): Diciembre

SPACES FOR MATHEMATICAL WORK: VIEWPOINTS AND PERSPECTIVES

DOI
https://doi.org/10.12802/relime.13.1741a
Submitted
July 5, 2023
Published
2014-12-30

Abstract

This special issue of Revista Latinoamericana de Investigación en Matemática Educativa (RELIME) is dedicated entirely to the articles proposed within the framework of the third Symposium Mathematical Work Space (ETM, in French) which is devoted to the study, development and possible applications of the ETM concept in the didactics of mathematics. The mathematical work and its functioning within the school setting are the foundation of the ETM approach, and in this introduction, before presenting the thematic organization of the contributions; we will summarize this theoretical approach. Its goal is to enrich, in a non-normative manner, the didactic study of the mathematical work of the students and teachers

References

  1. Alsina, C. & Nelsen, R. (2006). Math Made Visual: Creating Images for Understanding Mathematics. Estados Unidos: The Mathematical Association of America.
  2. Coutat, S. & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques. Annales de didactique et de sciences cognitives, 16, 97-126.
  3. Coutat, S., Laborde, C. & Richard, P. R. (2016). L’apprentissage instrumenté de propriétés en géométrie : propédeutique à l’acquisition d’une compétence de démonstration. Educational Studies in Mathematics, 93 (2), 195-221
  4. Duval, R. (1995). Why to teach geometry. ICMI Study on Geometry, (53-58) Catania.
  5. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la Visualisation, Différenciation des Raisonnements et Coordination de leurs Fonctionnements. Annales de Didactique et de sciences cognitives, 10, 5-53.
  6. Guzmán, M. (1996). El Rincón de la Pizarra. Ensayos de Visualización en Análisis Matemático. Elementos Básicos del Análisis. Madrid, España: Ediciones Pirámide.
  7. Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Éléments d’un cadre théorique pour l’enseignement et la formation des enseignants en géométrie. Canadian Journal of Science and Mathematics Education, 6 (2) 167-187.
  8. Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses. [El espacio de trabajo matemático y su génesis] Annales de didactique et de sciences cognitives, 16, 9-24.
  9. Kuzniak, A. (2013) Understanding the nature of the geometric work through its development and its transformations. In Rezat (ed) Transformation – A fundamental idea of Mathematics Education. (pp. 311-325). Springer.
  10. Kuzniak, A. & Rauscher J. C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77 (1), 129-147.
  11. Richard, P. R. (2004). L’inférence figurale: Un pas de raisonnement discursivo - graphique. Educational studies in Mathematics, 57 (2), 229-263.
  12. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of American Mathematical Society, 30 (2). 161-177.

Downloads

Download data is not yet available.