Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 12 No. 1 (2009): Marzo

DEVELOPMENT OF NUMBER SENSE IN MULTIPLICATION. A CASE STUDY WITH CHILDREN OF 7/8 YEARS OLD

Submitted
May 16, 2024
Published
2009-01-20

Abstract

This article discusses the sense of number in multiplication based on a case study, under the auspices of the project "Developing the sense of number: Perspectives and curricular demands", carried out in Portugal with children between five and twelve years of age. The approach used was quantitative and interpretive in nature and took the form of a case study. The analysis centers on the strategies used by second grade children (7 or 8 years old) to solve multiplication problems included in a series of classroom tasks. The results show that the contexts of the tasks, situated in the rectangular model, facilitate comprehension of multiplication, its properties and numeric multiplicative relationships.

References

  1. Abrantes, P. Oliveira, I. & Serrazina, 1. (1999). A Matemática na Educação Básica. Lisboa: Ministério da Educação
  2. Anghileri, J. (2001). Contrasting approaches that challenge tradition. In J. Anghileri (Ed.). Principles and practices in arithmetic teaching
  3. Askew, M. & Ebbutt, S. (2000). The numeracy file, London: Beam Education.
  4. Brocardo, J., Serrazina, L. & J-M Kraemer (2003). Algoritmos e sentido do número. Educação e Matemática, 75, 11-15
  5. Carpenter, T., Fennema, E., Franke, M., Levi, L. & Empson, S. (1999). Multiplication and division: Problem types and children's solution strategies. In: Children'smathematics: Cognitively guided instruction (pp. 33-53). Reston, VA: National Council of Teachers of Mathematics.
  6. Clarke, D. M. (2004). Issues in the Teaching of Algorithms in the Primary Years. In B. Clarke & al. (Eds.), International Perspectives on Learning and Teaching Mathematics (pp.21-36). Göteborg: National Center for Mathematics Education
  7. Dolk, M. e C. Fosnot (2001). Young mathematicians at work: constructing multiplication and division. Portsmouth, NH: Heineman.
  8. Fosnot, C. e Dolk, M. (2001). Young mathematics at work: Constructing number sense, addition and subtraction. Portsmouth, NH: Heinemann.
  9. Fuson, K. (2003). Developing mathematical power in whole number operations. In J.Kilpatrick, W. G. Martin e D. Schiffer (Eds.), A Research Companion for Principles and Standards for School Mathematics (pp. 69-93). Reston, Va: National Council of Teachers of Mathematics.
  10. Gravemeijer, K. (1997). Instructional design for reform in mathematics education. Beishuizen, M, Gravemeijer, K.P.E. & E.C.D.M. van Liesthout (Eds.). The role of contexts and models in the development of mathematical strategies and procedures. Freudenthal Institute, Utrecht, 13-34
  11. Gravmeijer, K. (2005). What makes mathematics so difficult and what can we do about it? In L. Santos, A. P. Canavarro & J. Brocardo (Org.), Educação Matemática: caminhos e encruzilhadas (pp.83-101). Lisboa: Associação de Professores de Matemática
  12. Gravmeijer, K. e Galen, F. (2003). Facts and Algorithms as products of student's own mathematical activity. In J.Kilpatrick, W. G. Martin e D. Schiffer (Eds.), A Research Companion for Principles and Standards for School Mathematics (pp. 114-122). Reston, Va: National Council of Teachers of Mathematics.
  13. Kami, C. e Dominic, A.(1998). The harmful effects of algorithms in grades 1-4. In L. J. Morrow e M. J. Kenney (Eds.), The teaching and learning of algorithms in school mathematics. Reston, Va: National Council of Teachers of Mathematics.
  14. McIntosh, A. (1998). Teaching mental algorithms constructively. In: L. Morrow & M. Kenney (Eds.), The teaching and learning of algorithms in school mathematics, 1998 Yearbook of the Nacional Council of Teachers of Mathematics (pp. 78-80). Reston, VA: National Council of Teachers of Mathematics.
  15. Mcintosh, A.; Reys, B. J. e Reys, R. R. (1992). A proposed framework for examining basic number sense. For the Learning of Matthematics, 12(3), 2-8, 44.
  16. Mendes, F. & Delgado, C. (2008). A aprendizagem da multiplicação e o desenvolvimento do sentido do número. In: J. Brocardo, L. Serrazina & I. Rocha (Org.), O sentido do número, reflexões que entrecruzam teoria e prática (pp. 159-182). Lisboa: Escolar Editora.
  17. Ministério da Educação (2001). Curriculo nacional do ensino básico competências essenciais. Lisboa: DEB/Ministério da Educação.
  18. Ministério da Educação (2007). Programa de Matemática do Ensino Básico. Lisboa: DGIDC/ Ministério da Educação. Disponível em http://sitio.dgidc.min-edu.pt/matematica/Paginas/Reajustamento_matematica.aspx
  19. NCTM (2000). Principles and Standards for School Mathematics. Reston, Va: National Council of Teachers of Mathematics.
  20. Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
  21. Treffers, A.& Buys, K. (2001). Grade 2 (and 3)calculation up to 100, In: M. Heuvel-Panhuizen (Ed.) Children learn mathematics (pp. 61-88). Netherlands: Freudenthal Institute (FI) Utrecht University & National Institute for Curriculum Development (SLO).

Downloads

Download data is not yet available.

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.