Skip to main navigation menu Skip to main content Skip to site footer

Special Article

Vol. 9 No. 4 (2006): Número Especial

ELEMENTOS DE UNA TEORÍA CULTURAL DE LA OBJETIVACIÓN

Submitted
October 27, 2024
Published
2006-12-30

Abstract

In this article, we present the general bases for a cultural theory of objectification. The theory in question deals with the teaching and learning of mathematics and takes its inspiration from some anthropological and historico-cultural schools of knowledge. This theory relies on a non-rationalist epistemology and ontology which give rise, on the one hand, to an anthropological conception of thought, and on the other, to an essentially social conception of learning. According to the theory of objectification, thought is not only characterized by its semiotically mediated nature but more importantly by way of its existence as a reflexive praxis. The learning of mathematics is thematized as the acquisition, by the community, of a form of reflection on the world guided by epistemiccultural modes which have been historically formed.

References

  1. Arendt, H. (1958).The Human Condition: The University of Chicago Press.
  2. Artigue, M. (1988). Ingénierie Didactique. Recherches en Didactique des Mathématiques, 9(3), 281-308.
  3. Bachelard, G. (1986). La formation de l’esprit scientifique. Paris: Vrin.
  4. Bakhurst, D. (1988). Activity, Consciousness and Communication. The Quarterly Newsletter of the Laboratory of Comparative Human Cognition, 10(2), 31-39.
  5. Baudrillard, J. (1968). Le système des objets. Paris: Gallimard.
  6. Bender, J. y Wellbery, D. E. (1991). Chronotypes: The Construction of Time. Palo Alto: Stanford University Press.
  7. Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33-115.
  8. Brousseau, G. (2004). Une modélisation de l’enseignement des mathématiques. Conferencia plenaria presentada en el Convegno di didattica della matematica, 24-25 de Septiembre, Locarno, Suiza.
  9. Brousseau, G. y P. Gibel (2005). Didactical handling of students’ reasoning processes in problem solving situations. Educational Studies in Mathematics, 59, 13-58.
  10. Cobb, P. y Yackel, E. (1996). Constructivist, Emergent, and Sociocultural Perspectives in the Context of Developmental Research. Educational Psychologist, 31(34), 175-190.
  11. Cole, M., y Griffin, P. (1980). Cultural amplifiers reconsidered. In D. R. Olson (Ed.), The Social Foundations of Language and Thought, Essays in Honor of Jerome S. Bruner (pp. 343-364). New York/London: W. W. Norton & Company.
  12. Colyvan, M. (2001). The miracle of applied mathematics. Synthese, 127, 265-277.
  13. de Vega, M. (1986). Introduccion a la psicologia cognitiva. Mexico: Alianza Editorial Mexicana.
  14. Eagleton, T. (1997). Marx. London, Phoenix.
  15. Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach to Developmental Research. Helsinki, Orienta-Konsultit Oy.
  16. Foucault, M. (1966). Les mots et les choses. Paris: Éditions Gallimard.
  17. Geertz, C. (1973). The Interpretation of Cultures. New York: Basic Books.
  18. Gray, E. y Tall, D. (1994). Duality, Ambiguity and Flexibility: A Proceptual View of Simple Arithmetic. Journal for Research in Mathematics Education, 26 (2), 115– 141.
  19. Homer (ca. 800 A.-C.). The Iliad. The Internet Classics, translated by Samuel Butler.
  20. http://classics.mit.edu/Homer/iliad.html
  21. Husserl, E. (1931). Ideas. General Introduction to Pure Phenomenology. London, New York: George Allen & Unwin.
  22. Ilyenkov, E. (1977). The Concept of the Ideal. Philosophy in the USSR: Problems of Dialectical Materialism (pp. 71-99). Moscow: Progress Publishers.
  23. Kant, E. (1980). Réflexions sur l’éducation. Paris: Vrin.
  24. Köhler, W. (1951). The Mentality of Apes. New York: The Humanities Press / London: Routledge and Kegan Paul.
  25. Lave, J. y E. Wenger (1991). Situated learning; legitimate peripheral participation. Cambridge: Cambridge University Press.
  26. Leibniz, G. W. (1966). Nouveaux essais sur l’entendement humain. Paris: Garnier Flammarion.
  27. Leontiev, A. N. (1968). El hombre y la cultura. En El hombre y la cultura: problemas téoricos sobre educación (pp. 9-48). México: Editorial Grijalbo.
  28. Leontiev, A. N. (1993). Actividad, conciencia y personalidad. México: ASBE Editorial.
  29. Martin, J. (2004). The Educational Inadequacy of Conceptions of Self in Educational Psychology. Interchange: A quarterly review of Education, 35, 185-208.
  30. Martin, J., Sugarman, J. y Thompson, J. (2003). Psychology and the Question of Agency. New York: SUNY.
  31. Merleau-Ponty, M. (1945). Phénomenologie de la perception. Paris: Gallimard.
  32. Mikhailov, F. T. (1980) The Riddle of the Self. Moscow: Progress Publishers.
  33. Radford, L. (1997). On Psychology, Historical Epistemology and the Teaching of Mathematics: Towards a Socio-Cultural History of Mathematics. For the Learning of Mathematics, 17(1), 26-33.
  34. Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics, 42(3), 237-268.
  35. Radford, L. (2002). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23.
  36. Radford, L. (2003a). On Culture and Mind. A post-Vygotskian Semiotic Perspective, with an Example from Greek Mathematical Thought. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger and V. Cifarelli (Eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing (pp. 49-79). Ottawa: Legas Publishing.
  37. Radford, L. (2003b). On the epistemological limits of language. Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123- 150.
  38. Radford, L. (2003c). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70.
  39. Radford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità [Sensible Things, Essences, Mathematical Objects and other ambiguities], La Matematica e la sua didattica, 2004, no. 1, 4-23. [Traducción al inglés en: http://laurentian.ca/educ/lradford/essences.pdf ]
  40. Radford, L. (2005). The semiotics of the schema. Kant, Piaget, and the Calculator. En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign. Grounding Mathematics Education (pp. 137-152). New York: Springer.
  41. Radford, L. (en prensa-1). Algebraic Thinking and the Generalization of Patterns – A semiotic Perspective. Proceedings of the 28th North American Chapter of the International Group for the Psychology of Mathematics Education (PME-NA), Mérida, Yucatán, México.
  42. Radford, L. (en prensa-2). Semiótica cultural y cognición. En: R. Cantoral y O. Covián (Eds.), Investigación en Matemática Educativa en Latinoamérica. México.
  43. Radford, L., Bardini, C., y Sabena, C. (2005). Perceptual semiosis and the microgenesis of algebraic generalizations. Fourth Congress of the European Society for Research in Mathematics Education (CERME 4), 17 - 21 February 2005, Sant Feliu de Guíxols, Spain. [http://laurentian.ca/educ/lradford/cerme4.pdf ]
  44. Radford, L. y Demers, S. (2004). Communication et apprentissage. Repères conceptuels et pratiques pour la salle de classe de mathématiques. Ottawa: Centre franco-ontarien des ressources pédagogiques.
  45. Robbins, F. E. (1921). The Tradition of Greek Arithmology. Classical Philology, 16(2), 97- 123.
  46. Sabena, C., Radford, L. y Bardini, C. (2005). Synchronizing gestures, words and actions in pattern generalizations. In H. L. Chick, J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, University of Melbourne, Australia, Vol. 4, pp. 129-136.
  47. Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
  48. Sierpinska, A. (1996). Interactionnisme et théorie des situations : Format d’interaction etContrat didactique. En D. Grenier (Ed.), Didactique et technologies cognitives en mathématiques, Séminaires 1996 (pp. 5-37). Grenoble: Université Joseph Fourier.
  49. Spengler, O. (1948). Le déclin de l’Occident. Paris: Gallimard.
  50. Steinbring, H., Bartolini Bussi, M. y Sierpinska, A. (Eds.) (1998). Language and Communication in the Mathematics Classroom. Reston, Virginia: National Council of Teachers of Mathematics.
  51. Todorov, T. (1984). Mikhail Bakhtin: The Dialogical Principle. Minneapolis, London: University of Minnesota Press.
  52. Von Glasersfeld, E. (1995). Radical Constructivism: A Way of Knowing and Learning. London, Wasington, D.C: The Falmer Press.
  53. Voloshinov, V. N. (1973). Marxism and the Philosophy of Language. Cambridge Massachusetts, London, England: Harvard University Press.
  54. Vygotsky, L. S. (1981a). The instrumental method in psychology. En J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 135-143). Armonk, N. Y.: Sharpe.
  55. Vygotsky, L. S. (1981b). The development of higher mental functions. En J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 144-188). Armonk, N. Y.: Sharpe.
  56. Vygotsky, L. S. y A. Luria (1994). Tool and symbol in child development. En R. van der Veer y J. Valsiner (Eds.), The Vygotsky Reader (pp. 99-174). Oxford: Blackwell.
  57. Wartofsky, M. (1979). Models, Representation and the Scientific Understanding. Dordrecht: D. Reidel.
  58. Weber, M. (1992). The Protestant Ethic and the Spirit of Capitalism. London New York, Routledge.
  59. Wertsch, J. V. (1991). Voices of the Mind. A Sociocultural Approach to Mediate Action. Cambridge, Ma: Harvard University Press.
  60. Yackel, E. y Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.

Downloads

Download data is not yet available.

Similar Articles

<< < 10 11 12 13 14 15 

You may also start an advanced similarity search for this article.