Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 23 No. 3 (2020): November

CLASSIFICATION CRITERIA IN PRESCHOOL CHILDREN USING LOGICAL BLOCKS

DOI
https://doi.org/10.12802/relime.20.2332
Submitted
November 7, 2022
Published
2020-11-14

Abstract

The objective of the research is to identify the evolution of children in classification and seriation criteria using the logical blocks of Dienes and to investigate the construction preferences of children during the development of free play. The methodology used was a descriptive study using an observation code, previously constructed. The results showed that color and size are the characteristics that children identify more quickly and with which they are more familiar. A little close to the previous ones is the form. Thickness is the least observed characteristic. At week 7, they begin to carry out serialization for 2 simultaneous criteria, completing it for the majority at the end of 9 weeks. Regarding construction preferences, children prefer to recreate the fantasy world of their stories than the objects of their daily lives.

References

  1. Alcaldía mayor de Bogotá, Secretaría distrital de integración social, (2013). Lineamiento pedagógico y curricular para la educación inicial en el Distrito, Bogotá: DVO Universal
  2. Bingham-Newman, A. M., & Hooper, F. H. (1974). Classification and seriation instruction and logical task performance in the preschool. American Educational Research Journal, 11(4), 379-393. doi.org/10.3102/00028312011004379
  3. Bokosmaty, S., Mavilidi, M. F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers and Education, 113, 313-326. doi. 10.1016/j.compedu.2017.06.008.
  4. Bonny, J. W., & Lourenco, S. F. (2015). Individual differences in children’s approximations of area correlate with competence in basic geometry. Learning and Individual Differences, 44, 16-24. doi.org/10.1016/j.lindif.2015.11.001.
  5. Caldera, Y. M., Culp, A. M., O’Brien, M., Truglio, R. T., Álvarez, M., & Huston, A. C. (1999). Children’s play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23(4), 855-872. doi.org/10.1080/016502599383577.
  6. Clements, D. H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: Summative research on the building blocks project. Journal for Research in Mathematics Education, 38(2), 136-163. doi: 10.2307/30034954.
  7. Castro Martínez, E., Olmo Romero, M. Á. D., & Castro Martínez, E. (2002). Desarrollo del pensamiento matemático infantil. Universidad de Granada. Facultad de Ciencias de la Educación. Departamento de Didáctica de la Matemática.
  8. Etchepareborda, M. C., & Abad-Mas, L. (2005). Memoria de trabajo en los procesos básicos del aprendizaje. Revista de neurología, 40(1), 79-83. chttps://europepmc.org/article/med/15736098
  9. Elia, L., Evangelou, K., Hadjittoouli, K., & van de Heuvel-Panhuizen, M. (2014). A kindergartner’suse of gestures when solving a geometrical problem in different spaces of constructed representation. Revista Latinoamericana de Investigación en Matemática Educativa, RELIME, 17(4), 199-220.doi.org/10.12802/relime.13.17410.
  10. Gathercole, S., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working Memory Skills and Educational Attainment: Evidence from National Curriculum Assessments at 7 and 14 Years of Age. Applied Cognitive Psychology, 18, 1–16. https://doi.org/10.1002/acp.934
  11. García, G. S. M., Moreno, M. M., Tyteca, P. P., & De la Vega, M. L. C. (2018). Trayectoria de aprendizaje de la longitud y su medida como instrumento conceptual usado por futuros maestrosde educación infantil. Revista Latinoamericana de Investigación en Matemática Educativa, RELIME, 21(2), 203-228. https://doi.org/10.12802/relime.18.2124
  12. García, A., & Vivas, J. (2018). Diferencias en la categorización de seres vivos y objetos Estudio enniños de edad escolar. Suma Psicológica, 25(1), 62-69. doi.org/10.14349/sumapsi.2018.v25.n1.7.
  13. Gejard, G., & Melander, H. (2018). Mathematizing in preschool: Children’s participation in geometrical discourse. European Early Childhood Education Research Journal, 26(4), 495-511. doi.org/10.1080/1350293X.2018.1487143
  14. Gibson, B. M., Leichtman, M. D., Kung, D. A., & Simpson, M. J. (2007). Use of landmark features and geometry by children and adults during a two-dimensional search task. Learning and Motivation, 38(1), 89-102. doi.org/10.1016/j.lmot.2006.09.002.
  15. Giofrè, D., Mammarella, I. C., & Cornoldi, C. (2014). The relationship among geometry, working memory, and intelligence in children. Journal of Experimental Child Psychology, 123, 112-128. doi.org/10.1016/j.jecp.2014.01.002
  16. Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114-122. doi.org/10.1016/j.lindif.2012.09.012.
  17. Hederich - Martínez, C., & Camargo - Uribe, Á. (2014). Análisis psicométrico de la prueba de intersección de figuras (FIT). Suma Psicológica, 21(2), 89-98. doi: 10.1016/S0121-4381(14)70011-6
  18. Hohmann, M., Weikart, D., & Epstein, A. (2019). La educación de los niños pequeños. Manual de High Scope para los profesionales de la educación infantil, volumen 1. Graciela Borja (ed.). México: High Scope Press.
  19. López, M. (2013). Rendimiento académico: su relación con la memoria de trabajo. Actualidades investigativas en educación, 13(3), 168-186. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-47032013000300008
  20. Lourenco, S. F., & Cabrera, J. (2015). The potentiation of geometry by features in human children:Evidence against modularity in the domain of navigation. Journal of Experimental Child psychology, 140, 184-196. doi.org/10.1016/j.jecp.2015.07.007.
  21. Martínez, N. S., Rojas, P. J., & Rojas, N. L. (2018). Estrategias de los niños en la resolución de situaciones multiplicativas: reconocimiento y uso de unidades. Revista Latinoamericana de Investigación en Matemática Educativa, 21(2), 157-181. https://doi.org/10.12802/relime.18.2122
  22. Mercer, M. E., Drodge, S. C., Courage, M. L., & Adams, R. J. (2014). A pseudoisochromatic test of color vision for human infants. Vision Research, 100, 72-77. doi.org/10.1016/j.visres.2014.04.006.
  23. Ministerio de Educación Nacional. (2015). Resumen Ejecutivo Colombia en PISA 2015 - Icfes.Recuperado de www.icfes.gov.co.
  24. Montero, I., & León, O. G. (2007). A guide for naming research studies in Psychology. International Journal of Clinical and Health Psychology, 7(3), 847-862. http://www.aepc.es/ijchp/GNEIP07_es.pdf.
  25. Motoki, K., Saito, T., Nouchi, R., Kawashima, R., & Sugiura, M. (2019). Light colors and comfortable warmth: Crossmodal correspondences between thermal sensations and color lightness influence consumer behavior. Food Quality and Preference, 72, 45-55. doi.org/10.1016/j.foodqual.2018.09.004.
  26. Negen, J., Roome, H. E., Keenaghan, S., & Nardini, M. (2018). Effects of two-dimensional versus three-dimensional landmark geometry and layout on young children’s recall of locations from new viewpoints. Journal of Experimental Child Psychology, 170, 1-29. doi.org/10.1016/j.jecp.2017.12.009.
  27. Nicholson, J. S., Barton, J. M., & Simons, A. L. (2018). Ability to categorize food predicts hypothetical food choices in head start preschoolers. Journal of Nutrition Education and Behavior, 50(3), 238-246. doi.10.1016/j.jneb.2017.09.026.
  28. Öngören, S., & Turcan, A. İ. (2009). The effectiviness of montessori education method in the acquisition of concept of geometrical shapes. Procedia-Social and Behavioral Sciences, 1(1), 1163-1166. doi.10.1016/j.sbspro.2009.01.209.
  29. Piaget, J. e Inhelder, B. (2013). The Child’s Conception of Space. London: Routledge.
  30. Piaget, J., & Teóricos, A. (1976). Desarrollo cognitivo. España: Fomtaine
  31. Pogozhina, I. (2016). Comparative study of the degree of relationship between logical thinking operational structures development levels in Russian and Chinese preschoolers. Procedia-Social and Behavioral Sciences, 233, 492-497. doi.org/10.1016/j.sbspro.2016.10.201.
  32. Ramírez, L. E., Gómez, A. V., & Zúñiga, D. V. (2018). Geometría en la práctica cotidiana: La mediciónde distancias inaccesibles en una obra del siglo XVI. Revista Latinoamericana de Investigación en Matemática Educativa, RELIME, 21(3), 247-274. doi.org/10.12802/relime.18.2131.
  33. Resnick, I., Verdine, B. N., Golinkoff, R., & Hirsh-Pasek, K. (2016). Geometric toys in the attic? A corpus analysis of early exposure to geometric shapes. Early Childhood Research Quarterly, 36, 358-365. doi.org/10.1016/j.ecresq.2016.01.007.
  34. Schmitt, S. A., Korucu, I., Napoli, A. R., Bryant, L. M., & Purpura, D. J. (2018). Using block play to enhance preschool children’s mathematics and executive functioning: A randomized controlled trial. Early Childhood Research Quarterly, 44, 181-191. doi.org/10.1016/j.ecresq.2018.04.006.
  35. Ünlü, M., Avcu, S., & Avcu, R. (2010). The relationship between geometry attitudes and self-efficacy beliefs towards geometry. Procedia-Social and Behavioral Sciences, 9, 1325-1329. doi.org/10.1016/j.sbspro.2010.12.328.
  36. Verdine, B. N., Zimmermann, L., Foster, L., Marzouk, M. A., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. (2018). Effects of geometric toy design on parent–child interactions and spatial language. Early Childhood Research Quarterly, 46, 126-141. doi.org/10.1016/j.ecresq.2018.03.015.
  37. Vesga Bravo, G., & de Losada, M. (2018). Creencias epistemológicas de docentes de matemáticas en formación y en ejercicio sobre las matemáticas, su enseñanza y aprendizaje. Revista Colombiana de Educación, (74), 243-267. https://doi.org/10.17227/rce.num74-6909.
  38. Vidermanova, K., & Vallo, D. (2015). Practical geometry tasks as a method for teaching active learning in geometry. Procedia-Social and Behavioral Sciences, 191, 1796-1800. doi.org/10.1016/j.sbspro.2015.04.421.
  39. Yang, T. X., Xie, W., Chen, C. S., Altgassen, M., Wang, Y., Cheung, E. F., & Chan, R. C. (2017). The development of multitasking in children aged 7–12years: Evidence from cross-sectional and longitudinal data. Journal of Experimental Child Psychology, 161, 63-80. https://doi.org/10.1016/j.jecp.2017.04.003.
  40. Yousif, S. R., & Lourenco, S. F. (2017). Are all geometric cues created equal? Children’s use of distance and length for reorientation. Cognitive Development, 43, 159-169. https://doi.org/10.1016/j.cogdev.2017.04.001.

Downloads

Download data is not yet available.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.