Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 4 No. 3 (2001): Noviembre

CONCEPCIONES EN GRAFICACIÓN, EL ORDEN ENTRE LAS COORDENADAS DE LOS PUNTOS DEL PLANO CARTESIANO"

Submitted
December 30, 2024
Published
2001-11-30

Abstract

The purpose of this work among high-school students was to do research into the use and conceptions associated with the comparison of order between the coordinates of dots over the plane, in order to better understand the process of grafication in the cartesian plane, seen from a semeiotic point of view in the R. Duval sense. Questionnaries were completed among students averaging 17 years old. The results indicated the conflict between the practical meaning of the size or amount associated with the numbers bearing signs. The proposed tasks can be solved through a figural or numeric strategy. In both, the conflict may be solved through the suppres- sion of the sign, and therefore through the orientation in the plane. The graphication that is supported in the dotting is not enough to have a well oriented global vision on the plane, as it leaves the problems of interpretation on the graphic, unresolved. We find that the comparison or order between the coordenates of the dots is not an homogenous work, it frequently depends on the position of the dots within the different quadrants, therefore, of the interpretation and orientation within the plane and/or of e value of the numbers associated to the coordenates.

References

  1. Acuña, C. (1999). La Relación entre el Fondo y la Forma y la Bidimensionalidad de los Puntos entre Estudiantes de Bachillerato. En Memorias del VII Simposio Internacional en Educación Matemática Elfriede Wenzelburger (pp. 176-182), UPN, Grupo Editorial Iberoamérica.
  2. Acuña, C. (1999 b). La Ubicación Espacial de Conjuntos de Puntos en el Plano. En F. Hit (Ed.), Investigaciones en Matemática Educativa II, (pp. 203-223). Grupo Editorial Iberoamerica.
  3. Dugdale, S. (1993). Functions and Graphs - Students Perspectives on Students Thinking. En A Schoenfeld (Ed.) Integrating Research on the Graphical Representation of Functions, Estudies in Mathematical Thinking and Learning series, 101-130.
  4. Duval, R. (1994). Les representations graphiques: functionnement et conditions de luer apprentissage. Proceedings of the 46th CIAEM Meeting Representations graphique et symbolique de Maternelle à L'Université.
  5. Duval, R. (1999). Representation, Vision and Visualization Cognitive Functions in Mathematical Thinking. Basic Issues for Learning. Proceedings of the Twenty First Annual Meeting of Psy- chology of Mathematics Education, 3-26.
  6. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics 24, 139-162
  7. Fischbein, E. (1999). Intuitions and Schemata in Mathematical Reasoning. Educational Studies in Mathematics 38, 11-50.
  8. Hativa, N. & Cohen D. (1995). Self learning of negative number concepts by lower division elementary students through solving computer-provided numerical problems. Educational Studies in Mathematics 28, 401-431.
  9. Hitt, F. (1995). Intuición primera versus pensamiento analítico: Dificultades en el paso de una representación gráfica a un contexto real y viceversa, Educación Matemática 7(1), 63-75.
  10. Kaput, J. (1991). Notation and Representations as Mediators of Constructive Processes. En E. von Glaserfeld (Ed.), Radical Constructivism in Mathematics Education, 53-74.
  11. Krutetskii, (1969). The Structure of mathematical Abilities. En J. Kilpatrick & I. Wirszup (Eds.) Soviet Studies in the Psychology of Learning and Teaching Mathematics, Vol. II.
  12. Küchermann, D. (1981). Positive and Negative Numbers, Children's Understanding of Mathematics. En J. Murray (Ed.), The CSMS mathematics team, Hart K., 11-16
  13. Janvier, C. (1986). Translation Processes in Mathematics Education.. En. C. Janvier (Ed.), Problems of Representation in the teaching and Learning of Mathematics, 27-32
  14. Leinhart, G., Zaslavsky, O. & Stein, M. (1990). Fuctions and Graphing. Review of Educational Reseach 60 (1), 1-63.
  15. Moschkovich, J., Schoenfeld, A. & Arcavi, A. (1993). Aspects of Understanding: On Multiple Perspectives and Representations of Linear Relations and Connections Among Them. En A Schoenfeld (Ed.), Integrating Research on the Graphical Representation of Functions, Studies in Mathematical Thinking and Learning series, 69-100.
  16. Noss, R., Healy. L. & Hoyles, C. (1997). The Construction of the Mathematical Meanings Con- necting the Visual with Simbols, Educational Studies in Mathematics 33, 203-233.
  17. Schoenfeld, A. (1989). Explorations of students' beliefs and Behavior. Journal for Research in Mathematics Education 20(4), 338-355.
  18. Thompson, P. (1993). Quantitave reasoning, complexity, and additive structures, Educational Studies in Mathematics 25, 165-208.
  19. Tirosh, D. & Stavy, R. (1999). Intuitive Rules: a way to explain and Predict Students' Reasoning. Educational Studies in Mathematics 38, 51-66.

Downloads

Download data is not yet available.