Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículo Especial

Vol. 17 No 4(I) (2014): Diciembre

UTILIZACIÓN DE GESTICULACIONES DE UN ALUMNO DE PREESCOLAR AL RESOLVER UN PROBLEMA GEOMÉTRICO EN DIFERENTES ESPACIOS DE REPRESENTACIÓN CONSTRUIDA

DOI
https://doi.org/10.12802/relime.13.17410
Soumis
juillet 6, 2023
Publiée
2014-12-30

Résumé

Cette étude examine, d’un point de vue cognitif, les gestes qu’un enfant de la maternelle produit lors d’une activité géométrique communicative. Cette activité implique un problème de configuration de la forme dans deux types d’espaces de représentation construite (ERC), l’ordinateur et le papier. Nous suivons l’analyse cognitive de la pensée géométrique selon Duval (1998) avec un accent mis sur les appréhensions perceptive opératoire des figures géométriques. Pendant l’activité, l’enfant devait donner des instructions à un expérimentateur pour que celui-ci puisse composer une figure sur le papier et aussi sur l’écran de l’ordinateur à l’aide d’une appliquette mathématique spécifique. L’enfant a produit des gestes iconiques et déictiques de façon différente dans chaque ERC. Chaque type de gestes avait une fonction cognitive différente dans le processus de résolution du problème. Ces résultats permettent de mieux comprendre l’espace de travail géométrique personnel d’un petit enfant alors qu’il effectue une tâche sur de configuration de la forme.

Références

  1. Battista, M.T. (1999). The importance of spatial structuring in geometric reasoning. Teaching Children Mathematics, 6 (3), 170–177.
  2. Brousseau, G. (1983): Etude de questions d’enseignement, un exemple: la géométrie. Séminaire de didactique des mathématiques et de l’informatique, (pp. 183–226). Grenoble: IMAG.
  3. Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  4. Duval, R. (1995). Geometrical Pictures: Kinds of representation and specific processes. In R. Sutherland and J. Mason (Eds.), Exploiting mental imagery with computers in mathematical education (pp. 142–157). Berlin: Springer.
  5. Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana and V. Villani (eds.), Perspectives on the Teaching of Geometry for the 21st century (pp. 37–51). Dordrecht: Kluwer Academic.
  6. Ericsson, K. A., and Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87 (3), 215–251.
  7. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory - motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.
  8. Kim, M., Roth, W. M., and Thom, J. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9, 207–238.
  9. Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language and gesture (pp. 162–185). Cambridge, UK: Cambridge University Press.
  10. Kuzniak, A. (2009). Un essai sur la nature du travail géométrique en fin de la scolarité obligatoire en France. In A. Gagatsis, A. Kuzniak, E.Deliyianni, and L.Vivier (Eds), Cyprus and France Research in Mathematics Education (pp. 71–90). Lefkosia: University of Cyprus.
  11. Kuzniak, A. (2012). Understanding the Nature of the Geometric Work Through its Development and its Transformations. Proceedings of the 12th International Congress on Mathematical Education. Seoul, Korea. Retrieved on November 4, 2012 from http://www.icme12.org/upload/submission/1922_F.pdf
  12. Kuzniak, A. and Rauscher, J. C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77 (1), 129–147.
  13. Lavelli, M., Pantoja, A. P. F., Hsu, H., Messinger, D., & Fogel, A. (2005). Using microgenetic designs to study change processes. In D. M. Teti (Ed.), Handbook of research methods in developmental science (pp. 40–65). Malden, MA: Blackwell Publishing.
  14. Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry: Theory, research and practical perspectives. Rotterdam: Sense Publishers.
  15. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: The University of Chicago Press.
  16. Nemirovsky, R., & Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in Mathematics, 70, 159–174.
  17. Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic - cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5 (1), 37-70.
  18. Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70, 111-126.
  19. Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, artifacts, and signs: a semiotic - cultural perspective on mathematical thinking. In Chick, H. L. & Vincent, J. L. (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 113-120. Melbourne: PME.
  20. Siegler, R. S. (1995). How does change occur: A microgenetic study of number conservation. Cognitive Psychology, 25, 225–73.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.