Artículos
Vol. 16 No 3 (2013): Noviembre
RAZONAMIENTO CONFIGURAL Y PROCEDIMIENTOS DE VERIFICACIÓN EN CONTEXTO GEOMÉTRICO
Résumé
O objetivo deste estudo é caracterizar os processos envolvidos na demonstração matemática, no contexto geométrico e a partir de uma perspectiva cognitiva. Em particular, o estudo se centra na caracterização da interação entre os processos de raciocínio e os procedimentos de verificação que os alunos do Ensino Fundamental utilizam na resolução de problemas de geometria em contexto de lápis e papel. Os resultados mostram que a utilização dos diferentes procedimentos de verificação para estabelecer a verdade de uma proposição se relaciona com os diferentes desenlaces do raciocínio nos problemas que exigem uma demonstração.
Références
- Bishop, A. J. (1983). Space and geometry. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 125-203). Nueva York, USA: Academic Press.
- Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in mathematics, 11(1), 7-16.
- Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, Teachers and Children, (pp. 216-235). London, UK: Kodder & Stoughton.
- Dreyfus, T. (1999). Why Johnny can’t prove? Educational Studies in Mathematics, 38(1/3), 85-109.
- Duval, R. (1998). Geometry from a cognitive point a view. In C. Mammana & V. Villani (Eds.), Perspective on the Teaching of Geometry for the 21st Century. Dordrecht/ Boston: Kluwer Academic Publishers.
- Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. In P. Boero (Ed.), Theorems in schools: from history and cognition to classroom practice, (pp. 137-161). Rotterdam, Netherland: Sense Publishers.
- Fischbein, E. (1987). Intuition in science and mathematics: an educational approach. Dordrecht, Netherland: Reidel.
- Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24 (2), 139-162.
- Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. In A. Gutiérrez & L. Puig (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 3-19). Valencia, España. University of Valencia
- Harel, G. (2007). Students’ proof schemes revisited. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 65-78). Rotterdam, The Netherlands: Sense Publishers.
- Harel, G. y Sowder, L. (1998). Student’s Proof Schemes: Results from exploratory studies. In E. Dubinsky, A. Schoenfeld & J. Kaput (Eds.), Research on Collegiate Mathematics Education (Vol. 3, pp. 234-283). Providence, RI: American Mathematical Society.
- Harel, G. y Sowder, L. (2007). Toward comprehensive perspective on the learning and teaching of proof. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). Greenwich, CT: Information Age Publishing.
- Hanna, G. y Jahnke, H.N. (1996). Proof and proving. In A. J. Bishop; M. A. Clements; C. Keitel; J. Kilpatrick & C. Laborde (Eds.), International Handbook on Mathematics Educations (Vol. 2, pp.877-908). Dordrecht, Netherland: Kluwer Academic Publishers.
- Hershkowitz, R., Parzysz, B.,Van Dermolen, J. (1996). Space and Shape. In A.J. Bishop; M.A. Clements; C. Keitel; J. Kilpatrick & C. Laborde (Eds.), International handbook of Mathematics Education (Vol. 1, pp. 161-204). Dordrecht, Netherland: Kluwer Academic Publishers.
- Houdement C., Kuzniak A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de didactique et de sciences cognitives, 11, 175-193.
- Ley Orgánica de Educación. (2006). Ley Orgánica 2/2006 – Boletín Oficial del Estado. Recuperado el 12 de febrero de 2013 de http://www.boe.es/boe/dias/2006/05/04/pdfs/A17158-17207.pdf
- Mesquita, A. (1989). L’influence des aspects figuratifs dans l’argumentation des élèves en géométrie: Éléments pour une typologie. Thèse d’université non publiée, Université Louis Pasteur. France.
- NCTM - National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
- Nelson, R. (1993). Proofs without word: Exercises in visual thinking. Washington D.C., EE.UU.: The Mathematical Association of America.
- Padilla, V. (1990). L’influence d’une acquisition de traitements purement figuraux sur l’apprentissage des mathématiques. Thèse d’université non publiée, Université Louis Pasteur. France.
- Presmeg, N.C. (1986). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17(3), 297-311.
- RAE - Real Academia Española, (2001). Diccionario de la lengua española. Vigésima segunda edición. Madrid, España: Espasa Calpe S.A.
- Torregrosa, G. y Quesada, H. (2007). Coordinación de procesos cognitivos en geometría. Revista Latinoamericana de investigación en Matemática Educativa, 10(2), 275-300.
- Torregrosa, G. y Quesada, H. (2010). Razonamiento configural como coordinación de procesos de visualización. Enseñanza de las Ciencias, 28 (3), 327-340.
- Zazkis, R., Dubinsky, E. y Dautermann, J. (1996). Coordinating visual and analytic strategies: a study of students’ understanding of the group D4. Journal for Research in Mathematics Education, 27 (4), 435-457.