Artículos
Vol. 15 No 1 (2012): Marzo
CONCEPCIONES Y MATEMÁTICA ESCOLAR: UNIDADES DE MEDIDA DE LAS FUNCIONES TRIGONOMÉTRICAS EN EL NIVEL MEDIO SUPERIOR
Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (Cinvestav-IPN)
-
Soumis
-
juillet 14, 2023
-
Publiée
-
2012-03-01
Résumé
Étude didactique et cognitive, cet article aborde le thème des unités de mesure dans les problèmes sur les fonctions trigonométriques en lycée au Mexique. La composante didactique de ce travail montre comment le radian est dé-thématisé, phénomène qui peut être vu comme un concept articulateur, alors que sa partie didactique offre, elle, des éléments permettant de se familiariser avec les conceptions personnelles des professeurs et des lycéens quant aux unités d’angles dans les fonctions trigonométriques en mathématiques dans un établissement scolaire. D’autre part, l’analyse des questionnaires soumis aux professeurs et élèves montre 1) que les calculatrices, ou tout autre système de calcul, ne sont utilisées par personne et que les professeurs ont tendance à se focaliser sur les valeurs remarquables 2) que les étudiants ne perçoivent pas que l’utilisation de la calculatrice pour les fonctions trigonométriques leur permet d’utiliser au moins deux mode de calcul : degré et radian.
Références
- Berger. P. L. y Luckmann, T. (2006). La construcción social de la realidad. Buenos Aires, Argentina: Amorrutu.
- Buendía, G. & Cordero, F. (2005). Prediction and the periodical aspect as generators of knowledge in a social practice framework. A socioepistemological study. Educational Studies in Mathematics 58(3), 299 - 333. DOI: 10.1007/s10649-005-2295-5
- Brosseau G. (1998). Théorie des situations didactiques. Grenoble, France: La Pensée Sauvage.
- Cantoral, R.; Farfán, R. M.; Lezama, J. y Martínez-Sierra, G. (2006). Socioepistemología y representación: algunos ejemplos. Revista Latinoamericana de Investigación en Matemática Educativa 9(4), 83 - 102
- Chevallard, Y., (1997). La transposición didáctica. Del saber sabio al saber enseñado. Buenos Aires, Argentina: Editorial Aique
- Dubinsky, E. (1992). The nature of the process of conception of function. In G. Harel & E. Dubinsky (Eds.) The concept of function: Aspects on Epistemology and Pedagogy (Vol. 25, pp. 85- 106). Washington, D.C.: Mathematical Association of America.
- Durkheim, E. (1988). Las reglas del método sociológico y otros escritos sobre filosofía de las ciencias sociales. España: Alianza Editorial.
- Elster, J. (1991). El cemento de la sociedad. Barcelona, España: Gedisa.El cemento de la sociedad. Barcelona, España: Gedisa.El cemento de la sociedad
- Ferrari, M. (2008). Un estudio socioepistemológico de lo logarítmico: de multiplicar sumando a una primitiva. Tesis de doctorado no publicada, Cinvestav-IPN, México.
- Gallino, L. (2001). Diccionario de sociología. D.F., México: Siglo XXI Editores.
- Harel, G. & Dubinsky, E. (1992). The concept of function: Aspects on Epistemology and Pedagogy (Vol. 25). Washington, D.C.: Mathematical Association of America.
- Lezama, J. (2005). Una mirada socioepistemológica al fenómeno de reproducibilidad. RevistaLatinoamericana de Investigación en Matemática Educativa 8(3), 287 -317.
- Maldonado, E. (2005). Un análisis didáctico de la función trigonométrica. Tesis de maestría no publicada, Cinvestav-IPN, México.
- Martínez-Sierra, G. (2005). Los procesos de convención matemática como generadores de conocimiento. Revista Latinoamericana de Investigación en Matemática Educativa 8 (2), 195- 218.
- Martínez-Sierra, G. (2007). Sobre la naturaleza y significado de los exponentes. En: C. Dolores, G. Martínez, R. Farfán y C. Navarro (Eds.), Matemática Educativa. Algunos aspectos de la socioepistemología y visualización en el aula (pp. 131 173). México: Editorial Díaz de Santos. ISBN: 84-7978-786-4
- Martínez-Sierra, G. (2010). Los estudios sobre los procesos de convención matemática: una síntesis metódica sobre la naturaleza de sus resultados. Revista Latinoamericana de Investigación en Matemática Educativa 13(4), 269 - 282.
- Martínez-Sierra, G. (2011). From the analysis of the articulation of the trigonometric functions to the corpus of eulerian analysis to the interpretation of the conceptual breaks present in its scholar structure. Accepted chapter in V. Recent Developments on Introducing a Historical Dimension in Mathematics Education, Katz & C. Tzanakis (Eds.).
- Méndez, C. (2008). Sobre la construcción escolar de las Funciones Trigonométricas: La transición grados ® radianes reales en el Nivel Medio Superior. Tesis de maestría no publicada, Universidad Autónoma de Guerrero, México.
- Montiel G. (2005). Estudio socioepistemológico de la función trigonométrica. (Tesis inédita de Doctorado). CICATA-IPN, México.
- Sfard, A. (1992). Operational origins of mathamatical objects and the quandary of reification. The case of function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects on Epistemology and Pedagogy (Vol. 25, pp. 59 - 84). Washington, D.C.: Mathematical Association of America.
- Sierpinska, A. (1992). On the understanding the notion of function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects on Epistemology and Pedagogy (Vol. 25, pp. 25 - 58). Washington, D.C.: Mathematical Association of America.
Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.