Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 7 No 2 (2004): Julio

PROLEGOMENES A LA ETHO- MATHEMATIQUE EN MESOAMERIQUE

Soumis
décembre 22, 2024
Publiée
2004-07-31

Résumé

Le propos de cet article est d’ identifier les similitudes entre les systèmes numériques de la culture Olmèque et Aztèque.  En vue de son développement le texte précise les limites géographiques en Mésoamérique, il expose une discussion sur l’ activité culturelle dans cette région avant la conquête espagnole, il décrit les systèmes numériques de ces deux cultures précolombiennes et situe aux Olmèques et aux Aztèques dans le continuum temporel et culturel de cette région. En fin, on formule certains considérations sur le procès de diffusion culturel en Mésoamérique.

Références

  1. Ascher, M. (1991). Ethnomathematics: a multicultural view of mathematical ideas. Pacific Grove, California, USA: Brooks/Cole Publishing Company.
  2. Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher (march), 207-214.
  3. Bernal, I. (1975). Mexico before Cortes: art, history and legend. Garden City, New York, USA: Anchor Books.
  4. Cajori, F. (1928). The early mathematical sciences in North and South America. La Salle, Illinois, USA: The Open Court Publishing.
  5. Caso, A. (1965). Zapotec writing and calendar. En Handbook of Middle American Indians (Vol. 3, pp. 931-947), Archaelogy of Southern Mesoamerica (part 2). Austin, Texas, USA: University of Texas Press.
  6. Coe, M. D. (1995). Mexico: from the olmecs to the aztecs. New York, USA: Thames and Hudson.
  7. D’Ambrosio, U. (1985a). Sociocultural bases for mathematics education. Campinas, Brazil: UNICAMP.
  8. D’Ambrosio, U. (1985b). Ethnomathematics: what might it be? Newsletter 1 (1), 2.
  9. D’Ambrosio, U. (1985c). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics 5 (1), 44-48.
  10. D’Ambrosio, U. (1997). Foreword. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. XVI-XXI). Albany, New York, USA: State University of New York.
  11. D’Ambrosio, U. (1998). Ethnomathematics: The art or technic of explaining and knowing. Las Cruces, New México, USA: ISGEm (traducción del portugués por Patrick Scott).
  12. D’Ambrosio, U. (2001). What is ethnomathematics and how can it help children. Teaching Children Mathematics 7 (6), 308-310.
  13. Eglash, R. (1999). African fractals: modern computing and indigeneous design. New Brunswick, New Jersey, USA: Rutgers University Press.
  14. Fasheh, M. (1997). Mathematics, culture, and authority. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 273-290). Albany, New York, USA: State University of New York.
  15. Ganguli, S. (1932). The indian origin of the modern place-value arithmetical notation. The American Mathematical Monthly 39 (may), 251-256.
  16. Gerdes, P. (1999). Geometry from Africa: mathematical and educational explorations. Washington, DC, USA: The Mathematical Association of America.
  17. Harvey, H. R., & Williams, B. J. (1993). Dechiperment and some implications of aztec numerical glyphs. En Michael P. (ed.), Native American Mathematics (pp. 237-260). Austin, Texas, USA: University of Texas Press.
  18. Joseph, G. G. (1991). The crest of the peacock: non-european roots of mathematics. London, England: Penguin Books.
  19. Joseph, G. G. (1997). Foundations of eurocentrism in mathematics. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 61-82). Albany, New York, USA: State University of New York.
  20. Knijnik, G. (1997). An ethnomathematical approach in mathematics education: a matter of political power. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 403-410). Albany, New York, USA: State University of New York.
  21. Marcus, J. (1993). Mesoamerican writing systems: propaganda, myth and history in four ancient mesoamerican civilizations. Princeton, New Jersey, USA: Princeton University Press.
  22. Martin, B. (1977). Mathematics and social interests. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 155-172). Albany, New York, USA: State University of New York.
  23. Oliveras, M. L. (1996). Etnomatemáticas. Formación de profesores e innovación cultural. Granada, España: Comares.
  24. Ortiz-Franco, L. (1977). Seleted study on mathematical word problem-solving processes. Tesis de doctorado, Stanford University, USA.
  25. Ortiz-Franco, L. (1990). Interrelationship of seven mathematical abilities across languages. Journal of Hispanic Behavioral Sciences 12 (3), 299-312.
  26. Ortiz-Franco, L. (1993). Chicanos have math in their blood: pre-columbian mathematics. Radical Teacher 43, 10-14.
  27. Ortiz-Franco, L. (2002). The aztec number system, algebra, and etnomathematics. En Judith E. Hankes y Gerald R. (Eds.), Changing the faces of mathematics: perspectives on indigenous people of NorthAmerica (pp. 237-250). Fast Reston, Virginia, USA: National Council of Teachers of Mathematics.
  28. Ortiz-Franco, L. & Magaña, M. (1973). La ciencia de los antiguos mexicanos: una bibliografia selecta. Aztlan: Chicano Journal of the Social Sciences and the Arts 4 (1), 195-205.
  29. Payne, E. & Closs, M. P. (1993). A survey of aztec numbers and their uses. En Closs, Michael P. (Ed.), Native American Mathematics (pp. 215-235). Austin, Texas, USA:University of Texas Press.
  30. Sanders, W. T. & Price, B. (1968). Mesoamerica: The evolution of a civilization. New York, USA: Random House.
  31. Schele, L. & Friedel, D. (1990). A forest of kings: the untold story of the ancient maya. New York, USA: William Morrow and Company.
  32. Soustelle, J. (1984). The olmecs: the oldest civilization of Mexico. Garden City, New York, USA: Double Day and Company, Inc (traducción del francés por Helen R. Lane).
  33. Stuart, G. E. (1993). New light on the olmec. National Geographic (pp. 88-115). Washington, DC, USA: National Geographic Society.
  34. Stuart, G. E. & Stuart, G. S. (1983). The mysterious maya. Washington, DC, USA: National Geographic Society.
  35. Vaillant, G. C. (1962). Aztecs of Mexico: origin, rise and fall of the aztec nation. Garden City, New York, USA: Double Day and Company.
  36. Zaslavsky, C. (1973). Africa counts: number and pattern in african culture. Brooklyn, New York, USA: Lawrence Hill Books.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.