Artículos
Vol. 18 N.º 3 (2015): Noviembre
CONTROL VISUAL EN LA CONSTRUCCIÓN DEL ÁREA DE SUPERFICIES PLANAS EN LOS TEXTOS ESCOLARES. UNA METODOLOGÍA DE ANÁLISIS
Universidad de Nariño, Colombia
Resumo
Para construir o conceito de área de superfícies planas, os livros didáticos propõem tarefas nas quais é dada a informação sobre como ver as figuras. Devem ser caracterizados os elementos e estratégias empregadas pelos livros para privilegiar uns tipos de visualização sobre outros e devem ser analisados os tipos de controle visual imperantes. O modelo de análise aqui apresentado inclui uma adaptação dos referentes teóricos expostos por Duval, (1995, 2003, 2005), sobre a visualização associada às figuras geométricas, e à noção de estrutura de controle de Balacheff e Gaudin, (2010) sobre a existência de certos elementos que guiam as maneiras de proceder dos estudantes quando se deparam com atividades matemáticas.
Referências
- Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. doi: 10.1023/A:1024312321077
- Balacheff, N. & Gaudin, N. (2010). Modeling Students’ Conceptions: The Case of Function. Research in Collegiate Mathematics Education, 16, 183-211.
- Brousseau, G. (1982). Les objets de la didactique des mathématiques- Ingénierie didactique. Actes de la deuxieme école d’été de didactique des mathematiques (pp. 10-60). Orléans, Francia: IREM d´Orléans.
- Burgermeister, P. et Coray, M. (2008). Processus de contrôle en résolution des problèmes dans le cadre de la proportionnalité des grandeurs: Une analyse descriptive. Recherches en Didactique des Mathématiques, 28(1), 63-105.
- Cantoral, R. y Montiel, G. (2003). Una representación visual del polinomio de Lagrange. Números, 55, 3-22.
- Cleary, T. J. & Zimmerman, B. J. (2004). Self-regulation empowerment program: A school-based program to enhance self-regulated and self-motivated cycles of student learning. Psychology in the Schools, 41(5), 537-550. doi: 10.1002/pits.10177
- Cobo, B. y Batanero, C. (2004). Significado de la medida en los libros de texto de secundaria. Enseñanza de las Ciencias, 22(1), 5-18.
- Dickson, L., Brown, M. y Gibson, O. (1991). El aprendizaje de las matemáticas. Barcelona, España: Editorial Labor S.A.
- Duval, R. (1995). Geometrical Pictures: kinds of representation and specific processing. In R. Suttherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 142-157). Berlin, Germany: Springer.
- Duval, R. (1998). Geometry from a cognitive point of view. En C. Mammana y V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 37-51). Dordrecht, Netherlands: Kluwer Academic Publishers.
- Duval, R. (1999). Semiosis y pensamiento humano. Registros semióticos y aprendizaje intelectuales (M. Vega Restrepo, Trad.), (1ª ed.). Cali, Colombia: Artes Gráficas Univalle.
- Duval, R. (2003). Voir en mathématiques. En E. Filloy (Ed.), Matemática educativa. Aspectos de la investigación actual (pp. 41–76). Distrito Federal, México: Centro de Investigación y Estudios Avanzados del IPN.
- Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de didactique et sciences cognitives, 10, 5-53.
- Garofalo, J. & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163–176. doi: 10.2307/748391
- Gettinger, M. & Seibert, J. K. (2002). Contributions of study skills to academic competence. School Psychology Review, 31(3), 350–365.
- Gutiérrez, A. (1996). Visualization in 3-dimensional geometry search of a framework. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol.1, pp. 3–19). Valencia, España: Universidad de Valencia.
- Kordaki, M. (2003). The effect of tools a computer microworld on student´s strategies regarding the concept of conservation of area. Educational Studies in Mathematics, 52(2), 177–209. doi: 10.1023/A:1024065107302.
- Kramarski, B., Weisse, I. & Kololshi-Minsker, I. (2010). How can self-regulated learning support the problem solving of third-grade students with mathematics anxiety? The International Journal on Mathematics Education, 42(2), 179–193. doi: 10.1007/s11858-009-0202-8.
- Lithner, J. (2004). Mathematical reasoning in calculus textbook exercises. Journal of Mathematical Behavior, 23(4), 405-427. doi:10.1016/j.jmathb.2004.09.003
- Love, E. & Pimm, D. (1996). “This is so”: a text on texts. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 371-409). Dordrecht, Netherlands: Kluwer Academic Publishers.
- Malmivuori, M. L. (2006). Affect and Self-Regulation. Educational Studies in Mathematics, 63(2), 149-164. doi: 10.1007/s10649-006-9022-8.
- Marmolejo, G. A. (2007). Algunos Tópicos a tener en cuenta en el aprendizaje del registro semiótico de las figuras. Procesos de visualización y factores de visibilidad (Tesis de maestría no publicada). Universidad del Valle, Cali, Colombia.
- Marmolejo, G. A. (2010). La visualización en los primeros ciclos de la educación básica. Posibilidades y complejidad. Sigma, 10(2), 10-26.
- Marmolejo, G. A. y González, M. T. (2013a). Función de la visualización en la construcción del área de figuras bidimensionales. Una metodología de análisis y su aplicación a un libro de texto. Revista Integración, 31(1), 87-106.
- Marmolejo, G. A. y González, M. T. (2013b). Visualización en el área de regiones poligonales. Una metodología de análisis de textos escolares. Educación Matemática, 25(3), 61-102.
- Marmolejo, G. A. y Vega, M. (2012). La visualización en las f iguras geométricas. Importancia y complejidad de su aprendizaje. Educación Matemática, 24(3), 7-32.
- Mesa, V. (2004). Characterizing practices associated with functions in middle school textbooks: An empirical approach. Educational Studies in Mathematics, 56 (2), 255–286. doi: 10.1023/B: EDUC.0000040409.63571.56.
- Mesa, V. (2010). Strategies for Controlling the Work in Mathematics Textbooks for Introductory Calculus. Research in Collegiate Mathematics Education, 16, 235-260.
- Padilla, V. (1992). L´influence d´une acquisition de traitements purement figuraux pour l’apprentissage des Mathématiques (Thèse de doctorat non publié). Université de Strasbourg, Strasbourg, France.
- Pape, S. J., Bell, C. V. & Yetkin, I. E. (2003). Developing Mathematical Thinking and Self-Regulated Learning: A Teaching Experiment in a Seventh-Grade Mathematics Classroom. Educational Studies in Mathematics, 53(3), 179-202. doi: 10.1023/A:1026062121857.
- Pepin, B., Haggarty, L. & Keynes, M. (2001). Mathematics textbooks and their use in English, French and German classrooms: a way to understand teaching and learning culture. Zentralblatt für Didaktik der Mathematik, 33(5), 158-175.
- Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook on the Psychology of Mathematics Education: Past, Present and Future (pp. 205-235). Rotterdam, Netherland: Sense Publishers.
- Rock, I. (1985). La percepción. Barcelona, España: Prensa Científica.
- Schmidt, W. H., Jorde, D., Cogan, L. S., Barrier, E., Gonzalo, I., Moser, U., … Wolfe, R. G. (1996). Characterizing pedagogical flow. An investigation of Mathematics and Science Teaching in Six Countries. Dordrecht, Netherlands: Kluwers Academic Publishers.
- Schneider, W. & Artelt, C. (2010). Metacognition and mathematics education. The International Journal on Mathematics Education, 42(2), 149–161. doi: 10.1007/s11858-010-0240-2.
- Schoenfeld, A. H. (1987). What’s the fuss about metacognition? In A. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Erlbaum
- Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York, United States of America: Macmillan.
- Schunk, D.H. (1996). Goal and self-evaluative influences during children’s cognitive skill learning. American Educational Research Journal, 33(2), 359–382.
- Villani, V. (1998). Perspectives on the teaching of geometry for the 21st Century (Discussion Document for an ICMI Study). In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 337-346). Dordrecht, Netherlands: Kluwer Academic Publishers.
- Whitebread, D. & Coltman, P. (2010). Aspects of pedagogy supporting metacognition and mathematical learning in young children; evidence from an observational study. The International Journal on Mathematics Education, 42(2), 163-178.
- doi: 10.1007/s11858-009-0233-1.
- Zimmerman, B. J. (2002). Achieving self-regulation: The trial and triumph of adolescence. In F. Pajares & T. Urdan (Eds.), Academic motivation of adolescents (Vol. 2, pp. 1–27). Greenwich, CT: Information Age.
- Zimmermann, W. & Cunnigham, S. (1991). Editor´s introduction: What is Mathematical Visualization? In W. Zimmermann & S. Cunnigham (Eds.), Visualization in teaching and Learning Mathematics (pp. 1-8). Washington, DC: Mathematical Association of America.