Artículos
Vol. 13 N.º 3 (2010): Noviembre
DESARROLLO DE UN ESQUEMA DE LA INTEGRAL DEFINIDA EN ESTUDIANTES DE INGENIERÍAS RELACIONADAS CON LAS CIENCIAS DE LA NATURALEZA. UN ANÁLISIS A TRAVÉS DE LA LÓGICA FUZZY
Universidad Politécnica de Valencia, España
Universidad de Alicante, España
Universidad Politécnica de Valencia, España
-
Submetido
-
janeiro 5, 2024
-
Publicado
-
2010-09-24
Resumo
Esta pesquisa tem como objetivo caracterizar o desenvolvimento do esquema da integral definida em estudantes de engenharia de ciências da terra, usando uma métrica fuzzy para determinar o grau de desenvolvimento nos níveis intra, inter e trans (Piaget e García, 1984). Os resultados mostram a dificuldade dos estudantes para relacionar a sucessão de somas de Riemann com sua dependência do valor n da partição, como uma manifestação da relação entre a sucessão de somas de Riemann e a passagem ao limite que configura o significado da integral definida.
Referências
- of the derivative. Journal of Mathematical Behavior 16(4), 399-43 Berusraphical, J. & Olivier, A. (2000). Student's conceptice of the Internationa muidenhout. Ja (Eds.), Proceedings of the 24th Conference 88th tiroshnational Group for Psychology of Mathematics Education (Vol. 2, pp. 73-80). Hiroshima, Japan: Hiroshima University.
- Calvo, C. (1997). Bases para una propuesta didáctica sobre integrales. Tesis de Maestria publicada. Universitat Autónoma de Barcelona, España.
- Camacho, M. y Depool, R. (2003a). Un estudio gráfico y numérico del cálculo de la Integra Definida utilizando el Programa de Cálculo Simbólico (PCS) Derive. Educación Matemites 15/3), 119-140.
- Camacho, M. & Depool, R. (2003b). Using Derive to understand the concept of definite integral International journal for Mathematics Teaching and learning 5, 1-16.
- Camacho, M. & González-Martin, A. (2004). What is first-year Mathematics students" actual knowledge about improper integrals? International journal of mathematical education in sciencen and technology 35(1), 73-89.
- Camacho M. y González-Martin, A. (2005). Sobre la comprensión en estudiantes de matemáticas del concepto de "integral impropia": algunas dificultades, obstáculos y errores. Enseñanza de las ciencias 23/1), 81-96.
- Camacho, M. Depool, R. & Santos-Trigo, M. (2010). Students' Use of Derive Software in Comprehendung and Making Sense of Definite Integral and Area Concepts. In F. Hitt, D. Holton & PW. Thompson (Eds.), Research in Collegiate Mathematics Education. VII CBMS Issues it Mathematics education (16), (pp. 29-61). Providence, RI: American Mathematical Society.
- Chang, CL (1968), Fuzzy topological spaces. Journal of Mathematical Analysis and Applications 24 (1) 182-190
- Contreras, A y Ordoñez. L. (2006). Complejidad ontosemiótica de un texto sobre la introducción a la integral definida. Revista Latinoamericana de Investigación en Matemática Educativa 9(1). 65-84
- Cooley L. Trigueros, M. & Baker, B. (2007). Schema Thematization: A Framework and an Example. Journal for Research in Mathematics Education 38(4), 370-392.
- Courill. 1 (1999) Students' understanding of the concept of chain rule in first year calculus and the relation to their understanding of composition of functions. Doctoral dissertation, Purdue University
- Cordero, F. (2005). El rol de algunas categorias del conocimiento matemático en educación superior. Una socioepistemologia integral. Revista Latinoamericana de Investigación en de la Matemática Educativa 8 (3), 265-286.
- Czarnocha, B., Loch, S., Prabhu, V. & Vidakovic, D. (2001). The concept of definite integral coordination of two schemas. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25 conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 297-304). Utrecht, The Netherlands: Freudenthal Institute.
- Davidson, N. (1990). Cooperative learning in Mathematics: A handbook for teachers. Menlo Park. CA: Innovative Learning. Addison-Wesley.
- Dreyfus, T. & Eisenberg, T. (1986). On visual versus analytical thinking in Mathematics. Proceedings of the 10 conference of the International Group for the Psychology of Mathematics Education (pp. 153-158). London, UK: University of London, Institute of Education.
- Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced Mathematical Thinking. (pp. 25-41). Dordrecht, The Netherlands: Kluwer Academic Publisher.
- Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.). Advanced Mathematical thinking. (pp. 95-123). Dordrecht, The Netherlands: Kluwer Academic Publishers
- Dubinsky, E. & Mcdonald, M. A. (2001). Apos: a constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.), The teaching and Learning of Mathematics at University Level, (pp.275-282). Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de le penseé. Annales de Didactique et de Sciencie Cognitives 5, 37-65.
- Ferrara, F., Pratt, D. & Robutti, O. (2006). The Role and Uses of Technologies for the Teaching of Algebra and Calculus. In A. Gutiérrez & P. Boero (Eds.) Handbook of Research on the Psychology of Mathematics Education Past, Present and Future (pp.237-274). Rotterdam/ Taipei, The Netherlands: Sense Publishers.
- Ferrini-Mundy, J. & Gaudard, M. (1992). Preparation or pitfall in the study of college Calculus. Journal for Research in Mathematics Education 23(1), 56-71.
- Ferrini-Mundy, J. & Graham, K. (1994). Research in Calculus Learning: Understanding of Limits, Derivatives, and integrals. In J. Kaput & E. Dubinsky (Eds.), Research issues in undergraduate Mathematics Learning: Preliminary Analyses and Results, MAA Notes Number 33 (pp.31-45). Washington, DC: Mathematical Association of America.
- Garcia, M., Llinares, S. & Sánchez-Matamoros, G. (2010). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education. doi: 10.1007/s10763-010-9227-2.
- George, A. & Veeramani, P.V. (1994). On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, pp. 395-399.
- Gutiérrez, A., Jaime, A. & Fortuny, J.M. (1991). An alternative paradigm to evaluate the acquisition of the Van Hiele levels. Journal for Research in Mathematics Education 22(3), 237-251.
- Kramosil, J. & Michalek, J. (1975). Fuzzy metric and statistical metric spaces. Kybernetika 11 (1976), 621-633.
- Llorens, J. L.. y Santonja, F. (1997). Una interpretación de las dificultades en el aprendizaje del concepto de integral. Divulgaciones Matemáticas 5(1/2), 61-76.
- Mason J. H. & Jonston-Wilder, S. J. (2004), Fundamental constructs in mathematics education. London: Routhledge Falmer.
- McDonald, M. A., Mathews, D. M. & Strobel, K. H. (2000). Understanding sequences: A tale of two objects. In E. Dubinsky, A. Schoenfeld & J. Kaput (Eds.), Research in Collegiate Mathematics Education. IV CBMS Issues in Mathematics education (8), (pp. 77-102). Providence, RI American Mathematical Society
- Muñoz, G. (2000) Elementos de enlace entre lo conceptual y lo algoritmico en el Cálculo integral Revista Latinoamericana de Investigación en Matemática Educativa 3 (2), 131-170.
- Orton, A. (1983). Student's understanding of integration. Educational Studies in Mathematics 14.1-18
- Piaget, J. y Garcia R. (1984). Psicogénesis e Historia de la Ciencia (2da ed.). México: Siglo veintiuno editores.
- Rasslan, S. & Tall, D. (2002). Definitions and Imagens for the Definite Integral Concept. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26" International Conference for the Psychology of Mathematics Education, (vol. 4, pp.89-96), Norwich, UK: University of East Anglia
- Socas, M. (2007). Dificultades y errores en el aprendizaje de las matemáticas. Análisis desde el enfoque lógico semiótico, Investigación en Educación Matemática 11, 19-52.
- Sutherland, R. & Balacheff, N. (1999). Didactical Complexity of Computacional Environments for the Learning of Mathematics. International Journal of Computers for Mathematical Learning 4 (1), 1-26
- Thomas, K. (1995). The fundamental theorem of calculus: An investigation into students constructions (Doctoral dissertation). Available from Dissertation Purdue University database. (UMI No. 9622774)
- Thomas, G. y Finney, R. (1999). Cálculo con geometria analitica (6 ed.) (Vol. 1). Madrid, España Addison-Wesley Iberoamericana.
- Trigueros, M. (2005). La noción de esquema en la investigación en matemática educativa a nivel superior . Educación Matemática 17(1), 5-31.
- Turégano, P. (1998). Del área a la integral. Un estudio en el contexto educativo. Enseñanza de las ciencias 16(2), 233-249.
- Zadeh, L. A (1965) Fuzzy sets. Inform. Control 8, 338-353
- Zazkis, R., Dubinsky, E. & Dautermann, J. (1996). Coordinating visual and analytic strategies A study of students' understanding of the group D4. Journal for Research in Mathematics Education 27(4), 435-457.