Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 13 N.º 3 (2010): Noviembre

UMA PROPOSTA PARA RELACIONAR ARTE E EDUCAÇÃO MATEMÁTICA

Enviado
janeiro 5, 2024
Publicado
2010-09-17

Resumo

Neste artigo, estuda-se a relação entre a arte e a educação matemática. A pergunta fundamental é "como a arte e a matemática podem relacionar-se e contribuir com o ensino da geometria, na qual não só o conhecimento matemático deve estar em jogo, mas também o desenvolvimento da estética e a visualização?". Enfocamo-nos na relação entre a arte e a educação, dando ênfase ao uso desta relação na educação matemática. Tratamos de entender que o conhecimento matemático não é próprio das obras de arte, mas é um elemento possível para organizar o espaço pitoresco e o pensamento do artista. Desta maneira, duas obras são analisadas para demonstrar como a arte e a matemática podem estar relacionadas com a educação matemática. Por último, chegamos à conclusão de que a arte e a matemática podem ser entrelaçadas através do exercício do pensamento, ao considerar o aspecto matemático como uma sugestão de trabalho para ajudar na visualização da arte.

Referências

  1. Alves, M. L. (2007). Muito além do olhar: um enlace da matemática com a arte. Dissertação (Mestrado em Educação em Ciências e Matemática), Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil.
  2. Bessot, D. & Le Goff, J. P. (1993). Mais où est donc passée la troisième dimension? In Comission Inter-IREM d'Épistemologie et d'Histoire des Mathématiques (Eds.), Histoires de Problèmes, Histoires des Mathématiques (pp. 199-240). Paris: Ellipses Editeur.
  3. Chartier, R. (1991). O mundo como representação. Estudos Avançados 11 (5), 173-191.
  4. Duarte Júnior, J. F (2007). Por que arte-educação? Campinas SP: Editora Papirus.
  5. Fainguelernt, E. K. & Nunes, K. R.A. (2006), Fazendo arte com a matemática. Porto Alegre, Brasil Artmed
  6. Field, M. (2002), Forum: Comment l'art peut-il venir en aide a l'enseignement des mathématiques? In C. P. Bruter (Ed.), Mathematics and Art. Mathematical Visualization in Art and Education (pp.168-172) Berlin: Springer.
  7. Flores, C. (2007) Olhar, saber, representar: sobre a representação em perspectiva São Paulo, Brasil: Musa Editora
  8. Foucault, M. (2000). A arqueologia do saber. (L. F. B. Neves, Trad.). Rio de Janeiro: Forense Universitária (Original publicado em 1969).
  9. Hickman, R. & Huckstep, P. (2003). Art and Mathematics in Education. Journal of Aesthetic Education, 37 (1), 1-12.
  10. Ministério da Educação, Secretaria de Educação Fundamental, Brasil (1998). Parámetros curriculares nacionais: arte. Terceiro e quarto ciclos do ensino Fundamental. Brasilia, Brasil: MEC, SEF
  11. Nunes, L. P. da S. (2008). A ilha de Circe? O imaginário bruxólico de Santa Catarina Portal Comunidades Açorianas-online. Disponivel em: http://www.comunidadesacorianas.org/artigophp?id_artigo-24&idioma PT. Acesso em 28 Jul, 2009
  12. Pulino, L. H. C. Z. (2000), Richard Rorty e a questão das representações em filosofia. In C. F Cardoso & J Malerba (Org.) Representações contribuição a um debate transdisciplinar (pp.101-123). Campinas SP, Brasil: Papiros.
  13. Sabba, C. G. (2004). Reencantando a matemática por meio da artet olhar kumanistico-matemático de Leonardo da Vince. Dissertação (Mestrado em Ensino de Ciências e Matemática) Universidade de São Paulo, São Paulo, Brasil.
  14. Sánchez, J. A. M. (2007). Geometría dinámica para el análisis de obras de arte Unión: Revista Iberoamericana de Educación Matemática 9, 83-99.
  15. Serenato, L. J. (2008). Aproximações interdisciplinares entre matemática e arte resgatando o lado humano da matemática. Dissertação (Mestrado em Educação), Universidade Federal do Paraná, Curitiba, Brasil.
  16. Silva, H. R. da (2000). A história como "a representação do passado" a nova abordagem da historiografia francesa. In C. F. Cardoso & J. Malerba (Org.). Representações: contribuiçan a um debate transdisciplinar (pp.81-99). Campinas SP: Papiros
  17. Zago, H. da S. (2010). Ensino, Geometria e Arte. Um olhar para as obras de Rodrigo de Hara Dissertação (Mestrado em Educação Cientifica e Tecnológica), Universidade Federal de Santa Catarina, Florianópolis, Brasil.

Downloads

Não há dados estatísticos.

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.