Artículos
Vol. 12 N.º 1 (2009): Marzo
ON EMPIRICAL RESEARCH IN THE FIELD OF USING HISTORY IN MATHEMATICS EDUCATION
Department of Science, Systems and Models, Research Group IMFUFA, Roskilde University, Denmark
-
Submetido
-
maio 16, 2024
-
Publicado
-
2009-02-28
Resumo
Este artigo aborda a questão da investigação empírica no campo do uso da história em Educação Matemática. Mais precisamente, foca-se no papel que a investigação empírica pode ter na discussão sobre como usar a história em Educação Matemática e o modo de o realizar. Isto é exemplificado, principalmente, a partir dos estudos de investigação empírica sobre o uso da história no programa de Matemática do "bachillerato Danés". Também se ilustra a forma como ambos, quer o desenho quer a metodologia de investigação destes estudos, dependiam do propósito inicial de usar a história como um objectivo mais do que como uma ferramenta. Finalmente, estabelecem-se perspectivas sobre os possíveis benefícios de aumentar a o número de investigações empíricas realizadas no campo do uso da história em Educação Matemática.
Referências
- Bakker, A. (2004), Design research in statistics education On symbolizing and computer tools. Ph.D. thesis, The Freudenthal Institute, Utrecht.
- Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht: Kluwer Academic Publishers. Edited and translated by Nicolas Balacheff, Martin Cooper, Rosamund Sutherland, and Virgina Warfield.
- Cooney, T. J., Shealy, B. E. & Arvold, B. (1998), Conceptualizing belief structures of preservice secondary mathematics teachers. Journal for Research in Mathematics Education 29(3), 306- 333.
- Cooney, T. J. (1999). Conceptualizing teachers' ways of knowing. Educational Studies in Mathematics 38 (1-3), 163-187.
- Diffie, W. & Hellman, M. E. (1976). New directions in cryptography, IEEE Transactions on Information Theory 21, 644-654.
- Epple, M. (2000). Genisis, Ideen, Institutionen, mathmatische Werkstätten: Formen der Mathematikgeschichte Ein metahistorischer Essay. Mathematische Semesterberichte 47. 131-163
- Ernest, P. (1998), Why teach mathematics? The justification problem in mathematics education. In: J. H. Jensen, M. Niss, and T. Wedege (Eds.), Justification and Enrollment Problems in Education Involving Mathematics or Physics (pp. 33-55). Roskilde, Denmark: Rosklide University Press,
- Fauvel, J. & van Maanen, J. (Eds.). (2000). History in Mathematics Education The ICMI Study. Dordrecht: Kluwer Academic Publishers.
- Fauvel, J. (1991), Using history in mathematics education. For the Learning of Mathematics 11(2), 3-6. Special Issue on History in Mathematics Education.
- Fréchet, M. (1906). Sur quelques points du calcul fonctionnel. Rend. Circolo Mat. Palermo 74: 1- 74.
- Freudenthal, H. (1991). Revisiting Mathematics Education China Lectures. Dordrecht: Kluwer Academic Publishers.
- Furinghetti, F. (1993). Images of mathematics outside the community of mathematicians: evidence and explanations. For the Learning of Mathematics 13(2), 33-38.
- Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies in Mathematics 66(2), 131-143. Special issue on the history of mathematics in mathematics education: Theory and practice.
- Golay, M. J. E. (1949). Notes on digital coding. Proceedings of the IRE 37, p. 657.
- Goodwin, D. M. (2007). Exploring the relationship between high school teachers mathematics history knowledge and their images of mathematics Ph.D. thesis, University of Massachusetts, Lowell.
- Grassmann, H. (1844). Die lineale Ausdehnungslehre, Leipzig: Otto Wigand, 1844. Gravemeijer, K. & Cobb, P. (2006). Outline of a method for design research in mathematics education. In: J. van den Akker, K. Gravemeijer, S. McKenney, and N. Nieveen (Eds.): Educational Design Research (pp. 17-51). Abingdon, Oxon: Routledge
- Gulikers, 1. & Blom, K. (2001). "A historical angle', a survey of recent literature on the use and value of the history in geometrical education. Educational Studies in Mathematics 47(2), 223-258.
- Hamming, R. W. (1950), Error detecting and error correcting codes. Bell System Technical Journal 29, 147-160.
- Harper, E. (1987), Ghost of Diophanthus. Educational Studies in Mathematics 18 (1), 75-90. Jankvist, U. T. (2007). Empirical research in the field of using history in mathematics education: Review of empirical studies in HPM2004 & ESU4', Nomad 12(3), 83-105.
- Jankvist, U. T. (2008a). Evaluating a teaching module on the carly history of error correcting codes. In: M. Kourkoulos and C. Tzanakis (Eds.), Proceedings 5th International Colloquium on the Didactics of Mathematics. Rethymnon: The University of Crete. In press
- Jankvist, U. T. (2008b). History of modern mathematics and/or modern applications of mathematics in mathematics education. In: Proceedings HPM2008 (CD-ROM). The HPM Group.
- Jankvist, U. T. (2008c). Kodningsteoriens tidlige historie et undervisningsforløb til gymnasiet. No. 459 in Tekster fra IMFUFA. Roskilde: IMFUFA. English translation of title: The Early History of Error Correcting Codes a Teaching Module for Upper Secondary School. 73 pages
- Jankvist, U. T. (2008d). Proceedings HPM2004&ESU4: empirical research on using history of mathematics in mathematics education. HPM Newsletter (67), 15-18.
- Jankvist, U. T. (2008c). RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet, No. 460 in Tekster fra IMFUFA. Roskilde: IMFUFA. English translation of title: RSA and the History of the Applied Mathematics in the Algorithma Teaching Module for Upper Secondary School. 116 pages.
- Jankvist, U. T. (2008). A teaching module on the history of public-key cryptography and RSA. BSHM Bulletin 23(3), 157-168.
- Jankvist, U. T. (2009a). A categorization of the 'whys' and 'hows' of using history in mathematics education. Educational Studies in Mathematics. In press (available online first).
- Jankvist, U. T. (2009b). History of modern applied mathematics in mathematics education. For the Learning of Mathematics 29(1). In press.
- Jankvist, U. T. (2009c). Students' beliefs about the evolution and development of mathematics. Proceedings from the CERME6 Working Group 15. Preprint.
- Kjeldsen, T. H. (2008). Egg-forms and measure-bodies: different mathematical practices in the early history of the modern theory of convexity. Science in Context 22(1), 85-113.
- Lester, Jr., F. K. (2002), Implications of research on students' beliefs for classroom practice. In: G. C. Leder, E. Pehkonen, and G. Törner (Eds.), Beliefs: A Hidden Variable in Mathematics Education?, Chapter 20 (pp. 345-353). Dordrecht: Kluwer Academic Publishers.
- Lester, Jr., F. K. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. ZDM 37(6), 457-467.
- Niss, M. & Jensen, T. H. (eds.). (2002). Kompetencer og matematiklæring Ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet. Uddannelsesstyrelsens temahæfteserie nr. 18. English translation of title: Competencies and Learning of Mathematics Ideas and Inspiration for the Development of Mathematics Education in Denmark.
- Niss, M. (1980). Nogle aspekter for matematikundervisningen i de gymnasiale uddannelser frem til 1990. Normat 28(2), 52-60, 87. English translation of title: Some aspects for mathematics education in upper secondary school approaching 1990.
- Niss, M. (1994). Mathematics in society. In: R. Biehler, R. W. Scholz, R. Sträßer, and B. Winkelmann (eds.): Didactics of Mathematics as a Scientific Discipline. Dordrecht: Kluwer Academic Publishers, pp. 367-378.
- Niss, M. (2001). Indledning. In: M. Niss (Ed.). Matematikken og Verden, Fremads debatbøger - Videnskab til debat. København: Forfatterne og Forlaget A/S. English translation of title: Introduction to the book: Mathematics and the World.
- Philippou, G. N. & Christou, C. (1998). The effects of a preparatory mathematics program in changing prospective teachers' attitudes towards mathematics. Educational Studies in Mathematics 35(2), 189-206.
- Rheinberger, H.-J. (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford: Stanford University Press.
- Rivest, R. L., Shamir, A. & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120-126.
- Rosen, K. H. (2003). Discrete Mathematics and Its Applications. New York: McGraw Hill, fifth edition.
- Sfard, A. (1995). The development of algebra: confronting historical and psychological perspectives. Journal of Mathematical Behaviour 14, 15-39.
- Shannon, C. E. (1948). A mathematical theory of communication I, II. In: D. Slepian (Ed.), Key Papers in The Development of Information Theory, Vol. 27. New York: IEEE Press, pp. 5-18, 19-29. (Pages 379-423 and 623-656 in the original publications by Shannon.)
- Singh, S. (1999). The Code Book - The Secret History of Codes and Codebraking. London: Fourth Estate.
- Siu, M.-K. & Tzanakis, C. (2004). History of mathematics in classroom teaching - appetizer? main course? or dessert?. Mediterranean Journal for Research in Mathematics Education 3(1-2), v-x. Special double issue on the role of the history of mathematics in mathematics education (proceedings from TSG 17 at ICME 10).
- Thompson, T. M. (1983). From Error-Correcting Codes through Sphere Packings to Simple Groups, No. 21 in The Carus Mathematical Monographs. The Mathematical Association of America.
- Toeplitz, O. (1927). Das Problem der Universitätsvorlesungen über Infinitesimalrechnung und ihrer Abgrenzung gegenüber der Infinitesimalrechnung an den höheren Schulen. Jahresbericht der deutschen Mathematiker-Vereinigung XXXVI, 88-100.
- Tzanakis, C. & Arcavi, A. (2000). Integrating history of mathematics in the classroom: an nalytic survey. In: J. Fauvel and J. van Maanen (Eds.), History in Mathematics Education, Chapter 7 (pp. 201-240.). The ICMI Study. Dordrecht: Kluwer Academic Publishers.
- Tzanakis, C. & Kourkoulos, M. (2007). May history and physics provide a useful aid for introducing basic statistical concepts?. In: F. Furinghetti, S. Kaijser, and C. Tzanakis (Eds.) Proceedings HPM2004 & ESU4 (pp. 284-295). Uppsala Universitet, revised edition. Undervisningsministeriet (2007). Vejledning: Matematik A, Matematik B, Matematik C. Bilag 35, 36, 37. Guidance for upper secondary mathematics teachers by the Danish ministry of education.
- van Amerom, B. A. (2002). Reinvention of early algebra Developmental research on the transition from arithmetic to algebra. Ph.D. thesis, The Freudenthal Inistitute, Utrecht.
- Wells, D. (2005). Prime Numbers - The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons, Inc.