Saltar para menu de navegação principal Saltar para conteúdo principal Saltar para rodapé do site

Artículos

Vol. 4 N.º 1 (2001): Marzo

LA INTRODUCCIÓN DE LA HISTORIA DE LAS MATEMÁTICAS EN LA ENSEÑANZA DE LOS NÚMEROS COMPLEJOS. UNA INVESTIGACIÓN EXPERIMENTAL DESEMPEÑADA EN LA EDUCACIÓN MEDIA SUPERIOR

Enviado
março 11, 2025
Publicado
2001-03-31

Resumo

Neste documento analísa-se a efectividade da introducção dos números imaginários, baseando-se mum exemplo histórico ao fazer uma prova aplicada a estudantes da preparatoria, cujas idades oscilan entre os 16 e os 18 anos. Se verificou a historia dos números imaginarios, num dos passos de acordo a uma solução ideida de Bombelli, como se reflexa na sua obra: Algebra publicada em 1572) duma ecuação cúbica, e o resultado duma ecuação de segundo grau (quadrática), para saber se é aceite ou reprovada pelos estudantes. Chegou-se a conclusão de que, no ámbito da Matemática Educativa, os efeitos das seleções que faz um professor deverão ser experimentalmente verificados; a presênça de esta área de experimentos, reforça o uso da história das matemáticas, ao mesmo tempo que muda as linhas traçados da pesquisagem educativa e nos oferece um estado epistemológico particular. 

Referências

  1. Bagni, G. T. (1997). Ma un passaggio non è il risultato... L'introduzione dei numeri immaginari nella scuola superiore. La matematica e la sua didattica 2, 187-201.
  2. Bombelli, R. (1966). L'Algebra. U. Forti & E. Bortolotti (Eds.). Milán, Italia: Feltrinelli.
  3. Bourbaki, N. (1963). Elementi di storia della matematica. Milán, Italia: Feltrinelli (Eléments d'histoire des mathematiques. París, Francia: Hermann, 1960).
  4. Brousseau, G. (1987), Fondements et méthodes de la didactique des mathématiques, Études en didactique des Mathématiques. Université de Bordeaux I, IREM de Bordeaux, Francia.
  5. Calinger, R. (Ed.) (1996). Vita mathematica: historical research and integration with teaching. Mathematical Association of America.
  6. Cantoral, R. (1998). Teaching and learning in a technological environment: The case of undergraduate mathematics. CRM-Notes. Barcelona, España: Centre de Recerca Matematica del Institut D'Estudis Catalans.
  7. Chevallard, Y. (1985). La transposition didactique, du savoir savant au savoir enseigné. Grenoble, Francia: La Pensée Sauvage.
  8. D'Amore, B. & Frabboni, F. (1996). Didattica generale e didattiche disciplinari. Milán, Italia: Angeli.
  9. D'Amore, B. (1999). Elementi di didattica della matematica. Bolonia, Italia: Pitagora.
  10. Enriques F. (1938). Le matematiche nella storia e nella cultura. Bolonia, Italia: Zanichelli.
  11. Farfán, R. M. (1997). Ingeniería Didáctica. Un estudio de la variación y el cambio. México: Grupo Editorial Iberoamérica.
  12. Fauvel, J. (1990). History in the mathematical classroom. The IREM papers. The Mathematical Association.
  13. Fauvel, J. (1991). For the learning of Mathematics (número especial) 11, 2.
  14. Fauvel, J. & van Maanen, J. (1997). Storia e didattica della matematica. Lettera Pristem 23, 8- 13.
  15. Feldman, C. F. & Toulmin, S. (1976). Logic andthe theory of mind. En J. K. Cole (Ed.), Nebraska symposium on motivation 1975. Lincoln, EE. UU.: University of Nebraska Press.
  16. Franci, R. & Toti Rigatelli, L. (1979). Storia della teoria delle equazioni algebriche, Mursia, Milán, Italia.
  17. Furinghetti, F. & Somaglia, A. (1997). Storia della matematica in classe. L'educazione matematica, XVIII, V, 2, 1.
  18. Kenney, E. (1989). Cardano: "Arithmetic Subtlety" and imposible solutions. Philosophia Matemática, II, 4(2), 195-216.
  19. Kline, M. (1972). Mathematical thought from ancient to modern times. Nueva York, EE. UU.: Oxford University Press.
  20. Nobre, S. (Ed.) (1994). Meeting of the International Study Group on relations between History and pedagogy of Mathematics. Blumenau, Brasil, 25-27 July, UNESP.
  21. Pescarini, A. (1995). Dinamiche dell'educazione matematica. Bollettino degli insegnanti di matematica del Canton Ticino 30, 1-18.
  22. Schoenfeld, A. (1985). Mathematical problem solving. Nueva York, EE. UU.: Academic Press.
  23. Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coins. Educational Studies in Mathematics 22, 1-36.
  24. Smith, D. E. (1959). A source book in Mathematics. Nueva York, EE. UU.: Dover.
  25. Swetz, F. J. (1989). Using problems from the History of Mathematics in classroom instruction. Mathematics Teacher 82, 370-377.
  26. Swetz, F. J. (1995). To know and to teach: mathematical pedagogy from a historical context. Educational Studies in Mathematics 29, 73-88.
  27. Tirosh, D. (1990). Inconsistencies in students' mathematical constructs. Focus on Learning
  28. Problems in Mathematics 12, 111-129.
  29. Tsamir, P. & Tirosh, D. (1997). Metacognizione e coerenza: il caso dell'infinito. La matematica e la sua didattica 2, 122-131.
  30. Weil, A. (1980). History of Mathematics: why and how. En O. Letho (Ed.), Proceedings of International Congress of Mathematicians (pp. 227-236). Helsinki 1978, I.

Downloads

Não há dados estatísticos.