Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 19 Núm. 2 (2016): Julio

EVALUACIÓN ON-LINE DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN ESTUDIANTES DE QUINTO Y SEXTO CURSO: AUTO-REGULACIÓN Y LOGRO

DOI
https://doi.org/10.12802/relime.13.1922
Enviado
junio 29, 2023
Publicado
2016-07-31

Resumen

El objetivo de este estudio ha sido poner a prueba un método de evaluación del proceso implicado en la resolución de problemas matemáticos, basado en la metodología de la Triple Tarea y en los principios del Aprendizaje Auto-regulado. Este protocolo se administró a 510 estudiantes de quinto y sexto curso procedentes del Norte de España, los cuales realizaron dos tareas matemáticas de diferente dificultad. Los resultados indicaron la presencia de unas estrategias de planificación ineficaces, así como la ausencia de mecanismos de revisión. Sin embargo, el análisis de las diferencias entre los grupos con diferente rendimiento en las tareas reveló los sub-procesos implicados en la planificación, y especialmente el empleo de estrategias de representación de la información, como determinantes importantes en el éxito de los estudiantes, ejerciendo un efecto mayor conforme la dificultad de la tarea aumentó.

Citas

  1. Abdullah, N., Zakaria, E. & Halim, L. (2012). The Effect of a Thinking Strategy Approach through Visual Representation on Achievement and Conceptual Understanding in Solving Mathematical Word Problems. Asian Social Science, 8(16), 16-340. doi:10.5539/ass.v8n16p30
  2. Ahmed, W., Minnaert, A., Kuyper, H. & Van der Werf, G. (2012). Reciprocal relationships between math self-concept and math anxiety. Learning and individual differences, 22(3), 385-389. doi: 10.1016/j.lindif.2011.12.004
  3. Azevedo R. & Cromley, J.G. (2004). Does training of self- regulated learning facilitate student’s learning with hypermedia? Journal of Educational Psychology, 96(3), 523–535. doi: 10.1037/0022-0663.96.3.523
  4. Bransford, J. D. & Stein, B. S. (1993). The ideal problem solver: A guide for improving thinking, learning and creativity (2nd ed.). New York, United States: W. H. Freeman.
  5. Butler D. L. & Cartier S. C. (2005). Multiple complementary methods for understanding self-regulated learning as situated in context. Accepted for presentation at the April 2005 Annual Meetings of the American Educational Research Association, Montreal, QC.
  6. Cleary, T. J. & Chen, P. P. (2009). Self-regulation, motivation, and math achievement in middle school: Variations across grade level and math context. Journal of School Psychology, 47(5), 291–314. doi: 10.1016/j.jsp.2009.04.002
  7. Csíkos, C., Szitányi, J. & Keleme, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: A design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81(1), 47–65. doi: 10.1007/s10649-011-9360-z
  8. Cueli, M., García, T. & González-Castro, P. (2013). Autorregulación y rendimiento académico en Matemáticas. [Self-regulatio and academic achievement in Mathematics]. Aula Abierta, 41(1), 39-48.
  9. Dettmers, S., Trautwein, U., Lüdtke, O., Goetz, T., Frenzel, A. & Pekrun, R. (2011). Students’ emotions during homework in mathematics: Testing a theoretical model of antecedents and achievement outcomes. Contemporary Educational Psychology, 36(1), 25–35. doi: 10.1016/j.lindif.2011.04.006
  10. Díez-Palomar, J., Menéndez, J. M. & Civil, M. (2011). Learning mathematics with adult learners: drawing from parents´ perspective. Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 71-94.
  11. Fidalgo, R., Torrance, M., Robledo, P. y García, J. N. (2009). Dos enfoques metacognitivos de intervención: auto-conocimiento del producto textual frente a auto-regulación del proceso de escritura. Revista de Psicología INFAD, International Journal of Developmental and Educational Psychology, 1(1), 303-312.
  12. Gálvez, G., Cosmelli, D., Cubillos, L., Leger, A. M., Mena, A., Tanter, E.,... y Soto-Andrade, J. (2011). Estrategias cognitivas para el cálculo mental. Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 9-40.
  13. García, T. y González-Pienda, J. A. (2012). Evaluación del proceso de Aprendizaje Autorregulado en el área de las Matemáticas mediante pizarras digitales. En J. Dulac y C. Alconada (Coord.),III Congreso Pizarra Digital. Publicación de comunicaciones (pp.105-117). Madrid, España:Pluma y Arroba.
  14. García, J. N., Rodríguez, C., Pacheco, D. & Diez, C. (2009). Influence of cognitive effort, sustained attention, working memory and ADHD symptoms in the process and product of written composition. An experimental study. Estudios de Psicología, 30(1), 31-50. doi: 10.1174/021093909787536326
  15. Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15.
  16. doi: 10.1177/00222194040370010201
  17. Greene, J. A. & Azevedo, R. (2010). The measurement of Learners’ Self-Regulated Cognitive and Metacognitive Processes While Using Computer-Based Learning Environments. Educational Psychologist, 45(4), 203-209. doi: 10.1080/00461520.2010.515935
  18. Hoffman, B. (2010). “I think I can, but I’m afraid to try”: The role of self-efficacy beliefs and mathematics anxiety in mathematics problem solving efficiency. Learning and Individual Differences, 20(3), 276–283. doi: 10.1016/j.lindif.2010.02.001
  19. Ifenthaler, D. (2008). Practical solutions for the diagnosis of progressing mental models. In D. Ifenthaler, P. Pirnay-Dummer & J. M. Spector (Eds.), Understanding models for learning and instruction. Essays in honor of Norbert M. Seel (pp. 43-61). New York, United States: Springer.
  20. Ifenthaler, D., Masduki, I. & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it. Tracking the development of cognitive structures over time. Instructional Science, 39(1), 41-61. doi: 10.1007/s11251-009-9097-6
  21. Ifenthaler, D. (2012). Determining the effectiveness of prompts for self-regulated learning in problem-solving scenarios. Educational Technology & Society, 15(1), 38–52.
  22. Jarero, M., Aparicio, E. & Sosa, L. (2013). Pruebas escritas como estrategia de evaluación de aprendizajes matemáticos. Un estudio de caso a nivel superior. Revista Latinoamericana de Investigación en Matemática Educativa, 16(2), 213-243. doi: 10.12802/relime.13.1623
  23. Kajamies, A., Vauras, M. & Kinnunen, R. (2010). Instructing low-achievers in mathematical word problem solving. Scandinavian Journal of Educational Research, 54(4), 335–355. doi: 10.1080/00313831.2010.493341
  24. Kramarski, B. & Gutman, M. (2006). How can self-regulated learning be supported in mathematical E-learning environments? Journal of Computer Assisted Learning, 22(1), 24–33. doi: 10.1111/j.1365-2729.2006.00157.x
  25. Lazakidou, G. & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education 54(1), 3-13. doi: 10.1016/j.compedu.2009.02.020
  26. Montague, M. (2008). Self-Regulation and Mathematics Instruction. Learning Disabilities Research & Practice, 22(1), 75–83. doi: 10.1111/j.1540-5826.2007.00232.x
  27. Montague, M., Enders, G. & Dietz, S. (2011). Effects of cognitive strategy instruction on math problem solving of middle school students with learning disabilities. Learning Disability Quarterly, 34(4), 262-272. doi: 10.1177/0731948712463368
  28. Olive, T., Kellogg, R. T. & Piolat, A. (2002). The Triple Task technique for studying the processus of writing: why and How? In G. Rijlaarsdam (Series Ed.), Studies in Writing & T. Olive, & C. M. Levy (Vol. Eds.), Contemporary tools and techniques for studying writing (pp. 31–59).Dordrecht, Netherlands: Kluwer Academic Publishers.
  29. Ostad, A. & Sorenson, P. M. (2007). Private speech and strategy- use patterns: Bidirectional comparisons of students with and without mathematical disabilities in a developmental perspective. Journal of Learning Disabilities, 40(1), 2–14.
  30. Pantziara, M., Gagatsis, A. & Elia, I. (2009). Using diagrams as tools for the solution of non-routine mathematical problems. Educational Studies in Mathematics, 72(1), 39–60. doi: 10.1007/s10649-009-9181-5
  31. Pennequin, V., Sorel, O., Nanty, I. & Fontaine, R. (2010). Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking and Reasoning, 16(3), 198-220.
  32. doi: 10.1080/13546783.2010.509052
  33. Pereis, F., Dignath, C. & Schmitz, B. (2009). Is it possible to improve mathematical achievement by means of self-regulation strategies? Evaluation of an intervention in regular math clases. European Journal of Psychology of Education, 24(1), 17-29. doi: 10.1007/BF03173472
  34. Piolat, A., Kellogg, R. T. & Farioli, F. (2001). The Triple Task technique for studying writing processes: on which task is attention focused? Current Psychology Letters. Brain, Behavior and Cognition, 4, 67–83.
  35. Piolat, A. & Olive, T. (2000). Comment étudier le coût et le déroulement de la rédaction de textes? La méthode de la triple-tâche: Un bilan méthodologique. L’Anneé Psychologique, 100(3), 465–502.
  36. Piolat, A., Olive, T. & Kellogg, R.T. (2005). Cognitive effort during note taking. Applied Cognititive Psychology, 19(3), 291–312. doi: 10.1002/acp.1086
  37. Piolat, A., Barbier, M. L. & Roussey, J. Y. (2008). Fluency and cognitive effort during first and second-language note taking and writing by undergraduate students. European Psychologist, 13(2), 114–125. doi: 10.1027/1016-9040.13.2.114
  38. Rosário, P., Mourão, R., Núñez, J. C., González-Pienda, J. A. & Solano, P. (2008). Storytelling as a promoter of Self-Regulated Learning (SRL) throughoutschooling. In A. Valle, J.C. Núñez, R.G. Cabanach, J.A. González-Pienda, & S. Rodríguez (Eds.), Handbook of instructional resources and their applications in the classroom (pp. 107-122). New York, United States: Nova Science.
  39. Rosenzweig. C., Krawec, J. & Montague, M. (2011). Metacognitive strategy use of eighth-grade students with and without learning disabilities during mathematical problem solving: A Think-Aloud analysis. Journal of Learning Disabilities, 44(6), 508-520. doi: 10.1177/0022219410378445
  40. Schmitz, B. & Perel, P. (2011). Self-monitoring of self-regulation during math homework behaviour using standardized diaries. Metacognition and Learning, 6, 255–273. doi: 10.1007/s11409-011-9076-6
  41. Shea, P. & Bidjerano, T. (2010). Learning presence: Towards a theory of self-efficacy, self-regulation, and the development of a communities of inquiry in online and blended learning environments. Computer & Education, 55(4), 1721–1731. doi:10.1016/j.compedu.2010.07.017
  42. Stylianou, D. A. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: towards an organizing scheme.Educational Stududies in Mathematics, 76(3), 265–280. doi: 10.1007/s10649-010-9273-2
  43. Throndsen, I. (2011). Self-regulated learning of basic arithmetic skills: A longitudinal study. British Journal of Educational Psychology, 81, 558–578. doi: 10.1348/2044-8279.002008
  44. Torrance, M. & Galbraith, D. (2006). The rocessing demands of writing. In MacArthur, C., Graham, S. & Fitzgerald, J. (Eds.), Handbook of Writing Research (pp. 67-80). New York, United States: The Guilford Press.
  45. Veenman M. V. J. (2005). The assessment of metacogni-tive skills: what can be learned from multi-method designs? In B. Moschner & C. Artelt (Eds.), Lernstrategien und Metakognition: Implikationen fur Forschung und Praxis (pp. 75–97). Berlin, Germany: Waxmann.
  46. Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197-218). New York, United States: Routledge.
  47. Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems. Lisse, Netherlands: Swets & Zeitlinger.
  48. Voyer, D. (2011). Performance in mathematical problem solving as a function of comprehencion and aritmetic skills. Journal of Science and Mathematics Education, 9(5), 1073-1092. doi:10.1007/s10763-010-9239-y
  49. Whimbey, A. & Lochhead, J. (1999). Problem-solving and comprehension. Hillsdale, NJ: Erlbaum.
  50. Williams, J. R. (2008). Revising the Declaration of Helsinki. World Medical Journal, 54, 120–125. Obtained from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681053/
  51. Zimmerman, B. J. (2000). Attaining self-regulation. A social cognitive perspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). San Diego, United States: Academic Press.
  52. Zimmerman, B. J. & Schunk, D. H. (2008). Motivation: An essential dimension of self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Motivation and self-regulated learning. Theory, research, and applications (pp. 1–30). New York, United States: Routledge.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

También puede {advancedSearchLink} para este artículo.