Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículo Especial

Vol. 13 Núm. 4(II) (2010): Número Especial /Diciembre

LA RELACIÓN DEL COMPORTAMIENTO DEL PROFESOR CON EL AVANCE COGNITIVO DE LOS ESTUDIANTES AL INTRODUCIR UN SOFTWARE EDUCATIVO EN EL AULA

Enviado
diciembre 26, 2023
Publicado
2010-06-23

Resumen

En la primera parte de este artículo se describe brevemente un estudio con el objetivo de indagar los beneficios de introducir en las aulas de educación primaria una computadora, un proyector y un paquete de cómputo diseñado con principios didácticos bien fundamentados. Sin embargo, el propósito principal aquí es mostrar el efecto que tuvo el tipo de comportamiento del profesor sobre el avance cognitivo de sus estudiantes dentro de esta situación de enseñanza. Los resultados revelaron la fuerte influencia de los modos de instrucción y de interacción del profesor, a los cuales señala como factores críticos en el proceso de enseñanza-aprendizaje de cualquier modelo pedagógico. Por otro lado, el comportamiento del profesor es en gran medida un reflejo de su "Conocimiento Matemático para la Enseñanza" (una amalgama de contenido y pedagogía) y cómo lo lleva al aula. De manera que éste último es el aspecto esencial que hay que atender, si se desean avances significativos en la educación.

Citas

  1. Balacheff, N. y Kaput, J. (1996). Computer-based Learning Environments in Mathematics En Bishop et al. (Eds.), International handbook of mathematics education (pp. 469-501) Kluwer Dordrecht.
  2. Ball. D. L. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning to teach. Journal of Teacher Education 51 (3), 241-247.
  3. Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L y Empson, S. B. (2000), Cognitively guided instruction: A research-based professor professional development program for elementary school mathematics, National center for improving student learning and achievement in mathematics and science, Report No. 003, Wisconsin centre for education research. The University of Wisconsin-Madison.
  4. Chapman, O. (2002). Belief structure and inservice high school mathematies teacher growth. In G. C. Leder, E. Pehkonen and G. Törner (Eds.), Beliefs: A Hidden Variable in Mathematics Education? (pp. 177-194). Dordrecht: Kluwer Academic Publishers
  5. diSessa, A. (1993). Toward an Epistemology of Physics. Cognition and Instruction 10 (2). 105-225.
  6. Emest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher A model Journal of Education for Teaching 15, 13-33
  7. Hill, H. Cy Ball, D. L. (2004). Learning Mathematics for Teaching: Results from California's Mathematics Professional Development Institutes. Journal for Research in Mathematics Education 35 (5), 330-351.
  8. Hoyles, C. (1992). Illuminations and reflections: Teachers, methodologies and mathematics. Proceedings of the 16 annual meeting of The International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 263-286). Durham; University of Jew Hampshire
  9. Hoyles, C. y Noss, R. (1992), A Pedagogy for Mathematical Microworlds. Educational Studies in Mathematics 23 (1), 31-57.
  10. Jacobs, V. y Ambrose, R. (2003). Individual interviews as a window into professors' practice: A framework for understanding professor-student interactions during mathematical problem solving In G. M. Lloyd, M. Wilson, J. L. M. Wilkins & S. L. Behm (Eds.), Proceedings of the 27 annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (Vol. 3, 33-38). Roanoke, VA: Virginia Tech
  11. Mellar, H., Bliss, Boohan. Ogborn y Tompsett (1994). Learning with Artificial Worlds Computer based modelling in the curriculum, Washington, Falmer Press.
  12. Mochón, S. y Rojano, T. (1999). Teaching math with technologies: A national project in Mexico, Proceedings of the 23 annual meeting of The International Group for the Psychology of Mathematics Education, Vol. 1, 300, Haifa, Israel.
  13. Mochón, S. (2001). Aiming a better understanding in science courses through mathematical reasoning. Proceedings of the Society for Information Technology and Teacher Education International Conference, 2525-2531, Orlando, Florida.
  14. Mochón, S. (2006). Teaching Math with a Computer and a Projector. An Educational and Research Project, Proceedings of the Society for Information Technology and Teacher Education International Conference, 3774-3781. Orlando, Florida, USA.
  15. Mochón, S. (2008). The Need for Developing Math Teachers" "Knowledge for Teaching", for an Effective Use of Technological Tools, Proceedings of the Society for Information Technology and Teacher Education International Conference, 5291-5296, Las Vegas, Nevada, USA.
  16. Moyer, P. S. y Milewicz, E. (2002). Learning to question: Categories of questioning used by pre-service professors during diagnostic mathematics interviews. Journal of Mathematics Teacher Education, 5, 293-315.
  17. Noss, R. y Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and Computers, Kluwer Academic, Dordrecht.
  18. Pirie, S. y Kieren, T. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational Studies in Mathematics, 26, 165-190.
  19. Ponte, J. P. y Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 461-494). Roterdham: Sense.
  20. Ponte, J. P. y Chapman, O. (2008). Preservice mathematics teachers' knowledge and development. En L. English (Ed.), Handbook of international research in mathematics education (pp. 223-261). New York, NY: Routledge.
  21. Rojano, T. (2002). Mathematics learning in the junior secondary school: Students' Access to significant mathematical ideas. In Lyn D. English (Ed.), Handbook of international research in mathematics education (pp. 143-162). Mahwah, New Jersey: Lawrence Erlbaum.
  22. Rojano, T. (2003). Incorporación de entornos tecnológicos de aprendizaje a la cultura escolar. Proyectos de innovación educativa en matemáticas y ciencias en escuelas secundarias públicas en México. Revista Iberoamericana de Educación OEI, 33, 135-169.
  23. Sacristán, A. I (2005). Teachers' difficulties in adapting to the use of new technologies in mathematics classrooms and the influence on students' learning and attitudes, Proceedings of the 27 annual meeting of the North American Chapter of The International Group for the Psychology of Mathematics Education, (CD-ROM), Virginia Tech, U.S.A.
  24. Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
  25. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15 (2), 4-14.
  26. Thompson, A. G. (1984). The relationship of teachers' conceptions of mathematics teaching to instructional practice. Educational Studies in Mathematics, 15 (2), 105-127.
  27. Warner, L y Schorr, R. Y. (2004). From primitive knowing to formalizing: The role of student- to-student questioning in the development of mathematical understanding, Proceedings of the 26 annual meeting of the North American Chapter of The International Group for the Psychology of Mathematics Education, Vol. 2, 429-437, Toronto, Canada.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 12 13 14 15 16 17 18 19 20 > >> 

También puede {advancedSearchLink} para este artículo.