Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículo Especial

Vol. 9 Núm. 4 (2006): Número Especial/ Diciembre

LEARNING MATHEMATICS: INCREASING THE VALUE OF INITIAL MATHEMATICAL WEALTH

Enviado
octubre 28, 2024
Publicado
2006-12-30

Resumen

Usando la teoría de signos de Charles Sanders Peirce, este artículo introduce la noción de riqueza matemática. La primera sección argumenta la relación intrínseca entre las matemáticas, los aprendices de matemáticas, y los signos matemáticos. La segunda, argumenta la relación triangular entre interpretación, objetivación, y generalización. La tercera, argumenta cómo el discurso matemático es un medio potente en la objetivación semiótica. La cuarta sección argumenta cómo el discurso matemático en el salón de clase, media el aumento del valor de la riqueza matemática del alumno, en forma sincrónica y diacrónica, cuando él la invierte en la construcción de nuevos conceptos. La última sección discute cómo maestros, con diferentes perspectivas teóricas, influyen en la dirección del discurso matemático en el salón de clase y, en consecuencia, en el crecimiento de la riqueza matemática de sus estudiantes.

Citas

  1. Austin, J. L. & Howson A. G. (1979). Language and mathematical education.Educational Studies in Mathematics, 10, 161-197.
  2. Bauersfeld, H. (1998). About the notion of culture in mathematics education. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom, (pp. 375- 389). Cambridge, UK: Cambridge University Press.
  3. Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer Academic Publishers. Bourdieu, P. (1991). Language and symbolic power. Cambridge, Massachusetts: Harvard University Press.
  4. Brousseau, G. (1997). Theory of didactical situations in mathematics. Edited by Nicolas Balacheff, Martin Cooper, Rosamund Sutherland, and Virginia Warfield. Dordrecht, The Netherlands: Kluwer Academic Press.
  5. Bruner, J. S. (1986). Actual minds, possible worlds. Cambridge, Massachusetts: Harvard University Press.
  6. Davis, P. J. & Hersh, R. (1981). The mathematical experience. Boston: Houghton Mifflin Company.
  7. Deacon, T. (1997). The symbolic species: The coevolution of language and the brain. New York: W. W. Norton & Company.
  8. Duval, R. (2006). The cognitive analysis of problems of comprehension in the learning of mathematics. In A. Sáenz-Ludlow, and N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 103-131.
  9. Ernest, P. (2006). A semiotic perspective of mathematical activity: The case of number. In A. Sáenz-Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 67-101.
  10. Gay, W. (1980). Analogy and metaphor. Philosophy and Social Criticism, 7(3-4), 299- 317.
  11. Habermas, J. (1984). The theory of communicative action. 2. Boston: Beacon Press.
  12. Halliday, M. A. K. (1978). Language as social semiotics. London: Arnold. National Council of Teachers of Mathematics (2000). Principles and Standards of School Mathematics. Reston, Virginia: National Council of Teachers of Mathematics.
  13. Ongstad, S. (2006). Mathematics and mathematics education as triadic communication? In A. Sáenz-Ludlow, and N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 247-277.
  14. Parmentier, R. J. (1985). Signs’ place in medias res: Peirce’s concept of semiotic mediation. In E. Mertz & R.J. Parmentier (Eds.), Semiotic mediation (pp. 23-48). Orlando, Florida: Academic Press.
  15. Peirce, C. S. (1903). The three normative sciences. In The Essential Peirce, 2, (pp. 1893-1913) edited by The Peirce Edition Project, (pp. 196-207). Bloomington, Indiana: Indiana University Press.
  16. Peirce, C. S. (1956). The essence of mathematics. In James R. Newman (Ed.), The World of Mathematics, 3, (pp. 1773-1783), New York: Simon and Schuster.
  17. Peirce, C. S. (1974). Collected Paper (CP). C. Hartshorne, and P. Weiss (Eds.), 1-4. Cambridge, Massachusetts: Harvard University Press. (Reference is made to volumes and paragraphs).
  18. Peirce, C. S. (1976). The New Elements of Mathematics (NEP). Carolyn Eisele (Ed), 1- 4. The Hague: Mouton Publishers.
  19. Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 299-312). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  20. Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to learners’ types of generalization. Mathematical Thinking and Learning, 5(1), 37-70.
  21. Radford, L. (2006a). The anthropology of meaning. In A. Sáenz-Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 39-65.
  22. Radford, L. (2006b). Glossary of internal document of the symposium of the Symbolic Cognition Group. Vermont, January 3-9, 2006.
  23. Radford, L. (in press). Semiótica cultural y cognición. In R. Cantoral & O. Covián (Eds.), Investigación en Matemática Educativa en Latinoamérica. México.
  24. Rossi-Landi, F. (1980). On linguistic money. Philosophy and Social Criticism, 7(3-4), 346-372.
  25. Rotman, B. (2000). Mathematics as sign. Stanford, California: Stanford University Press. Sáenz-Ludlow, A. (2003). A collective chain of signification in conceptualizing fractions. Journal of Mathematical Behavior, 22, 181-211.
  26. Sáenz-Ludlow, A. (2004). Metaphor and numerical diagrams in the arithmetical activity of a fourth-grade class. Journal for Research in Mathematics Education, 1(35), 34-56.
  27. Sáenz-Ludlow, A. (2006). Classroom interpreting games with an illustration. In A. Sáenz- Ludlow, & N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 183- 218.
  28. Seeger, F. (1998). Discourse and beyond: On the ethnography of classroom discourse. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp.85-101). Reston, Virginia: National
  29. Sierpinska, A. (1998). Three epistemologies, three views of classroom communication: Constructivism, sociocultural approaches, interactionism. In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 30-62). Reston, Virginia: National Council of Teachers of Mathematics.
  30. Skemp, R. (1987). The psychology of learning mathematics. Lawrence Erlbaum Associates.
  31. Steinbring, H., Bartolini Bussi, M. G., & Sierpinska, A. (Eds.) (1998). Language and communication in the mathematics classroom. Reston, Virginia: National Council of Teachers of Mathematics.
  32. Van Dormolen, J. (1986). Textual analysis. In B. Chirstiansen, A. G. howson, & M. Otte (Eds.), Perspectives on mathematics education, (pp. 141-171). Boston: B. Reidel Publishing Company.
  33. Vygotsky, L. S. (1987). Thinking and speech. New York: Plenum Press.
  34. White, L. A. (1956). The locus of mathematical reality: An anthropological footnote. In James R. Newman (Ed.), The World of Mathematics, 4, (pp. 2348-2364). New York: Simon and Schuster.
  35. Wilder, R. (1973/1968). Evolution of mathematical concepts. Milton Keyness, England:
  36. The Open University Press.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

También puede {advancedSearchLink} para este artículo.