Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 19 No. 2 (2016): Julio

REFLECTIVE PORTFOLIO OF MATHEMATICS AS A TOOL FOR SELF- REGULATION OF LEARNING FOR HIGH SCHOOL STUDENTS

DOI
https://doi.org/10.12802/relime.13.1923
Submitted
June 29, 2023
Published
2016-07-31

Abstract

This study aims to analyze various aspects of mathematical learning of high school students mediated by a device of assessment for learning. Specifically, we have studied the processes used by three students whilst developing a mathematics portfolio, during which the majority of decisions were taken by them. During the elaboration of the portfolio, cognitive and metacognitive aspects of mathematical thinking were identified. The portfolio is an effective and practical way to create a pedagogical differentiation and to provide, in an ongoing and systematic way, the development of metacognitive processes that enable the development of a self - regulated learning.

References

  1. Bardin, L. (2011). Análise de conteúdo. Lisboa, Portugal: EDIÇÔES 70, Lda (trabalho original em francês, publicado em 1977).
  2. Belgrad, S. (2013). Portfolios and E-Portfolios: Student reflection, self-assessment, and goal setting in the learning process. In J. McMillan (Ed.), Sage handbook of research on classroom assessment (pp. 331-346). California, USA: SAGE Publications, Inc.
  3. Black, P. & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation, and Accountability, 21(1), 5-31. doi: 10.1007/s11092-008-9068-5
  4. Bondoso, T., e Santos, L. (2009). Portefólios... e outras descobertas. Educação e Matemática, 101, 3-9.
  5. Burns, R. (2000). Introduction to research methods. London, UK: SAGE Publications.
  6. Cuoco, A. (2003). Mathematical habits on mind. In H. Schoenfeld (Ed.), Teaching mathematics through problem solving: grades 6-12 (pp. 27-37). Reston, VA: NCTM.
  7. De Corte, E., Mason, L., Depaepe, F., & Verschaffel, L. (2011). Self-regulation of mathematical knowledge and skills. In B. J. Zimmerman, & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 155-172). New York, USA: Routledge.
  8. Dewey, J. (1997). How we think. New York, USA: Dower Publications, INC.
  9. Dias, P. (2005). Avaliação reguladora no Ensino secundário. Processos utilizados pelos alunos em investigações matemáticas (Dissertação de mestrado, Universidade de Lisboa)
  10. Fernandes, D. (Org.); Neves, A.; Campos, C.; Conceição, J., e Aliaz, V. (1994). Portofólios: para uma avaliação mais autêntica, mais participada e mais reflexiva. Em D. Fernandes (Coord.), Pensar avaliação, melhorar aprendizagem. Lisboa, Portugal: Instituto de Inovação Educacional
  11. Fernandes, D. (2008). Avaliação das aprendizagens: desafios às teorias, práticas e políticas. Lisboa, Portugal: Texto Editores.
  12. Flavell, J. (1979). Metacognition and cognitive monitoring. A new area of cognitive developmental inquiry. American Psychologist, 34(10), 906-911. doi: 10.1037/0003-066X.34.10.906
  13. Fletcher, A., & Shaw, G. (2012). How does student-directed assessment affect learning? Using assessment as a learning process. International Journal of Multiple Research Approaches, 6(3), 245–263.
  14. Frobisher, L. (1994). Problems, investigations and an investigative approach. In Orton & G. Wain (Eds.), Issues in Teaching Mathematics (pp. 150-173). London, UK: Cassel.
  15. Hannula, M. S. (2006). Motivation in Mathematics: Goals reflected in emotions. Educational Studies in Mathematics, 63(2), 165-178. doi: 10.1007/s10649-005-9019-8
  16. Holding, J. (1991). The investigations book. Cambridge, UK: University Press.
  17. Klenowski, V. (2002) Developing portfolios for learning and assessment: Processes and principles, London, UK: Routledge Falmer.
  18. Kosko, K. & Wilkins, J. (2010). Mathematical communication and its relation to the frequency of manipulative use. International Electronic Journal of Mathematics Education, 5(2), 79-90.
  19. Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. Harlow, UK: Prentice Hall.
  20. NCTM (2000). Principles and Standards for School Mathematics. Reston, USA: NCTM.
  21. Nicol, D. (2010). From monologue to dialogue: improving written feedback processes in mass higher education. Assessment & Evaluation in Higher Education, 35(5), 501–517. doi:10.1080/02602931003786559
  22. Oliveira, M. (1993). Vygotsky. Aprendizado e desenvolvimento. Um processo sócio-histórico. São Paulo, Brasil: Scipione.
  23. Pinto, J. e Santos, L. (2006). Modelos de avaliação das aprendizagens. Lisboa, Portugal: Universidade Aberta.
  24. Pirie, S. (1987). Mathematical investigations in your classroom - a guide for teachers. London, UK: MacMillan Education Ldt.
  25. Pólya, G. (1977). A arte de resolver problemas. Rio de Janeiro, Brasil: Interciência.
  26. Ponte, J. P. (2005). Gestão curricular em Matemática. Em GTI (Ed.), O professor e o desenvolvimento curricular (pp. 11-34). Lisboa, Portugal: Associação de Professores de Matemática.
  27. Powell, A. e Bairral, M. (2006). A escrita e o pensamento matemático. Interações e potencialidades. Campinas, Brasil: Papirus.
  28. Pugalee, D. (2004). A comparison of verbal and written descriptions of student’s problem solving processes. Educational Studies in Mathematics, 55(1), 27-47. doi: 10.1023/B:EDUC.0000017666.11367.c7
  29. Santiago, P.; Donaldson, G.; Looney, A., & Nusche, D. (2012). OECD Reviews of evaluation and assessment in education: Portugal. OECD. Obtenido de http://www.oecd.org/edu/evaluationpolicy
  30. Santos, L. (2008). Dilemas e desafios da avaliação reguladora. Em L. Menezes; L. Santos; H. Gomes & C. Rodrigues (Eds.), Avaliação em Matemática: Problemas e desafios (pp. 11-35). Viseu, Portugal: Secção de Educação Matemática da Sociedade Portuguesa de Ciências de Educação.
  31. Santos, L. (2009). Diferenciação pedagógica: Um desafio a enfrentar. Noésis, 79, 52-57.
  32. Santos, L. (Org). (2010). Avaliar para Aprender: Relatos de experiências de sala de aula do pré-escolar ao ensino secundário. Porto, Portugal: Porto Editora & Instituto de Educação, Universidade de Lisboa.
  33. Santos, L. & Pinto, J. (2010). The use of feedback in written reports and portfolio: an assessment for learning strategy. Journal of the Korean Society of Mathematical Education. Series D: Research in Mathematical Education, 14(3), 281-297.
  34. Santos, L. & Semana, S. (2015). Developing mathematics written communication through expository writing supported by assessment strategies. Educational Studies in Mathematics, 88(1), 65-87. doi: 10.1007/s10649-014-9557-z
  35. Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York, USA: Macmillan Publishing Co, Inc.
  36. Silva, A., Duarte, A., Sá, I. e Simão, A. (2004). Aprendizagem auto-regulada pelo estudante: perspectivas psicológicas e educacionais. Porto, Lisboa: Porto Editora.
  37. Tardif, J. (2007). La régulation par l’intermédiaire des situations d’apprentissage contextualisantes: une aventure essentiellement “prescriptive”. En L. Allal e L. Lopez (Org.), Régulation des apprentissages en situation scolaire et en formation (pp. 25-.43). Montréal, Canada: De Boeck.
  38. Vygostky, L. (1987). Thinking and speech. New York, USA: Plenum.
  39. Wiliam, D. (2007). Keeping learning on track. In F. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1053-1098). Charlotte, USA: Information Age Publishing.
  40. Wiliam, D. (2013). Assessment: The bridge between teaching and learning. Voices from the Middle, 21(2), 15-20.
  41. Yin, R. (2002). Case study research: Design and methods (3rd ed.). California, USA: Sage Publications, Inc..
  42. Zimmerman, B. J. (2000). Attaining self-regulation: a social cognitive perspective. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Hanbook of Self-Regulation (pp. 13-39). New York, USA: Academic Press.
  43. Zumbrunn, S., Tadlock, J., & Roberts, E. D. (2011). Encouraging self-regulated learning in the classroom: A Review of the literature. Metropolitan Educational Research Consortium, Virginia, USA: Commonwealth University

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.