Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 19 No. 1 (2016): Marzo

KNOWLEDGE LEVEL IN CONDITIONAL PROBABILITY AND INDEPENDENCE OF EVENTS: A STUDY CASE IN THE PORTUGUESE HIGH SCHOOL

DOI
https://doi.org/10.12802/relime.13.1912
Submitted
June 29, 2023
Published
2016-03-31

Abstract

Taking two problem - situations involving conditional probability, independence and incompatibility, we suggest the measurements of the performance and the scientific rigor of a response using, in parallel, two ordinal Likert scale measures. Based on the responses given by 43 students in 12th grade (age 17), a descriptive analysis of these measurements was executed in order to evaluate the levels of knowledge of the students in those concepts. The results showed that not always a correct written response comes with rigor. Besides, an interpretative analysis of the same responses confirmed the existence of conflicts in the teaching of those concepts in Portugal. The conflicts are concerning with the interpretation and the calculation of conditional probabilities and the notions of independence and incompatibility. The present study recommends more practice on the mathematical formulation of statements involving conditional probability and more emphasis on the probabilistic feature of the notion of independence.

References

  1. Batanero, C. (2005). Significados de la probabilidad en la educación secundaria. Revista Latinoamericana de Investigación en Matemática Educativa, 8(3), 247-263.
  2. Carvalho, M. J. (2013). Ensino e aprendizagem de probabilidade condicionada e independência (Dissertação de Mestrado não publicada). Universidade de Aveiro, Aveiro, Portugal. Recuperada de http://hdl.handle.net/10773/12044.
  3. Cordani, L. K. & Wechsler, S. (2006). Teaching independence and exchangeability. In A. Rossman & B. Chance (Eds.), Proceedings of the 7th International Conference on Teaching Statistics. Salvador, Brasil: International Association for Statistics Education.
  4. Cunha, M. C. (2010). A influência do ensino nos raciocínios de alunos do 12.º ano de escolaridade em probabilidade (Dissertação de Mestrado não publicada). Universidade do Minho, Braga, Portugal. Recuperada de: http://hdl.handle.net/1822/10945.
  5. D’Amelio, A. (2009). Undergraduate student difficulties with independent and mutually exclusive events concepts. The Montana Mathematics Enthusiast, 6(1-2), 47-56.
  6. D’Amore, B. (2006). Objetos, significados, representaciones semióticas y sentido. Revista Latinoamericana de Investigación en Matemática Educativa, 9(Número Especial), 177-196.
  7. Díaz, C. & Batanero, C. (2009). University students’ knowledge and biases in conditional probability reasoning. International Electronic Journal of Mathematics Education, 4(3), 131-162.
  8. Díaz, C., Batanero, C., & Contreras, J. M. (2010). Teaching independence and conditional probability. Boletín de Estadística e Investigación Operativa., 26(2), 149-162.
  9. Díaz, C. y de la Fuente, I. (2006). Enseñanza del teorema de Bayes con apoyo tecnológico. En P. Flores y J. Lupiáñez (Eds.), Investigación en el aula de matemáticas. Estadística y Azar. Granada, España: Sociedad de Educación Matemática Thales.
  10. Falk, R. (1979). Revision of probability and the time axis. Proceedings of the 3rd International Conference for the Psychology of Mathematics Education (pp. 64-66). Warwick, UK: Organizing Committee.
  11. Falk, R. (1986). Conditional probabilities: Insights and difficulties. In R. Davidson & J. Swift (Eds.), Proceedings of the 2nd International Conference on Teaching Statistics (pp. 292-297). British Columbia, Canada: University of Victoria.
  12. Fernandes, J. A., Nascimento, M. M., Cunha, M. C. e Contreras, J. M. (Junho, 2011). Desenvolvimento do conceito de probabilidade condicionada em alunos do 12.º ano através do ensino. Comunicação apresentada na 13ª Conferência Interamericana de Educação Matemática. Recife, Brasil: CIAEM. Recuperada de: http://hdl.handle.net/1822/12924.
  13. Fischbein, E. & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, 28(1), 96–105. doi: 10.2307/749665
  14. Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathematiques, 22 (2-3), 237-284.
  15. Godino, J. D. (2012). Origen y aportaciones de la perspectiva ontosemiótica de investigación en Didáctica de la Matemática. En A. Estepa, A. Contreras, J. Deulofeu, M. C. Penalva, F. J. García y L. Ordóñez (Eds.), Investigación en Educación Matemática XVI (pp. 49-68). Jaén, Espanha: SEIEM.
  16. Godino, J. D. y Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14(3), 325-355.
  17. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39 (1-2), 127-135. doi: 10.1007/s11858-006-0004-1
  18. Godino, J. D., Font, V. y Wilhelmi, M. R. (2008). Análisis didáctico de procesos de estudio matemático basado en el enfoque ontosemiótico. Publicaciones, 38, 25-48.
  19. Kataoka, V., Trevethan, H. e Borim da Silva, C. (2010). Independence of events: an analysis of knowledge level in different groups of students. In C. Reading (Ed.), Proceedings of the 8thInternational Conference on Teaching Statistics. Ljubljana, Eslovénia.
  20. Kataoka, V. Y., Souza, A. A., Oliveira, A. C. S., Fernandes, F. M. O., Paranaíba, P. F., & Oliveira, M. S. (July, 2008). Probability Teaching in Brazilian Basic Education: Evaluation and Intervention. Paper presented at the 11th International Congress on Mathematical Education,
  21. Monterrey, México: ICME. Recuperada de: http://citeseerx.ist.psu.edu/viewdoc/summary?do i=10.1.1.214.9221
  22. Lonjedo-Vicent, M. A., Huerta-Palau, M. P. e Carles-Fariña, M. (2012) Conditional probability problems in textbooks an example from Spain. Revista Latinoamericana de Investigación en Matemática Educativa, 15(3), 319-337.
  23. Neto, M. T. B. (2009). O desenvolvimento do raciocínio dedutivo ao nível do Ensino Secundário: Recurso a geometrias planas (Dissertação de Doutoramento não publicada). Universidade de Aveiro, Aveiro, Portugal.
  24. Ponte, J. P., Serrazina, L., Guimarães, H.M., Breda, A. Guimarães, F., Sousa, H., … e Oliveira, P. A. (2001). Programa de Matemática do Ensino Básico. Lisboa, Portugal: Ministério da Educação.
  25. Ponte, J. P. (1994). O estudo de caso na investigação em educação matemática. Quadrante, 3(1), 3-18.
  26. Sánchez, E. (1996). Dificultades en la comprensión del concepto de eventos independientes. En F. Hitt (Ed.), Investigaciones en Educación Matemática (pp. 389-404). D.F., México: Grupo Editorial Iberoamericano.
  27. Sobreiro, D. (2011). Probabilidade condicionada: um estudo com alunos do ensino secundário (Dissertação de Mestrado não publicada). Universidade de Aveiro, Aveiro, Portugal.
  28. Tesch, R. (1990). Qualitative research: Analysis Types and Software Tools. New York, USA: Falmer.
  29. Tversky, A. & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psycological Review, 90(4), 293-315.
  30. Watson, J. (1995). Conditional probability: Its place in the mathematics curriculum. Mathematics Teacher, 88(1), 12-17.
  31. Watson, J. M. & Moritz, J. B. (2002). School students’ reasoning about conjunction and conditional events. International Journal of Mathematical Education in Science and Technology, 33(1), 59-84. doi: 10.1080/00207390110087615.
  32. Way, J. (February, 2003). The development of young children’s notions of probability. Paper presented at the European Research in Mathematics Education III,Bellaria, Itália: CERME3. Recuperada de: http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG5/TG5_way_cerme3.pdf

Downloads

Download data is not yet available.

Similar Articles

<< < 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.