Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 18 No. 2 (2015): Julio

ANALYSIS OF THE HISTORICAL AND PHILOSOPHICAL ANTECEDENTS OF “D UVAL ’S COGNITIVE PARADOX ”

DOI
https://doi.org/10.12802/relime.13.1822
Submitted
July 1, 2023
Published
2015-01-16

Abstract

n a famous article published in 1993, Raymond Duval highlighted a simple fact: the student may confuse the mathematical object O he is trying to build cognitively with one of its semiotic representations R(O). Duval explained that this confusion was due to a sort of inevitable paradox: only someone who has already built O, can recognize R(O) as a representation of O and not as an object in itself. Thereafter, this thought has been extremely influential for researchers. However, even if in different terms, many scholars of semiotics have emphasized the same phenomenon. In this paper we propose to remind some of them.

References

  1. Bagni, G. T. (2006). Eadem sunt, quae sibi mutuo substitui possunt, salva veritate. En S. Sbaragli (Ed.), La matematica e la sua didattica: Vent’anni di impegno. Actas del congreso internacional para los 60 años de Bruno D’Amore (pp. 34–37). Roma: Carocci Faber.
  2. Bagni, G. T. (2012). S. Agostino e la matematica. Ultima lezione di Giorgio T. Bagni nell’Ateneo di Treviso (15 mayo 2009). L’insegnamento della matematica e delle scienze integrate, 35A-B(3), 217–227.
  3. Carruccio, E. (1964). Il valore ascetico della matematica nel pensiero di S. Agostino. Studium, 60, 868–870.
  4. Charles, D. (2000). Aristotle on meaning and essence. New York: Oxford University Press.
  5. D’Amore, B. (2000). “Concetti” e “oggetti” in matematica. Rivista di matematica dell’Università di Parma, 3(6), 143–151.
  6. D’Amore, B. (2001). Un contributo al dibattito su concetti e oggetti matematici: La posizione “ingenua” in una teoria “realista” vs il modello “antropologico” in una teoria “pragmatica”. La matematica e la sua didattica, 15(1), 31–56.
  7. D’Amore, B. (2003). Le basi filosofiche, pedagogiche, epistemologiche e concettuali della didattica della matematica. Prefacio de Guy Brousseau. Bologna: Pitagora. [Versión en idioma español:
  8. D’Amore, B. (2005). Bases filosóficas, pedagógicas, epistemológicas y conceptuales de la didáctica de la matemática. Prefacio de Guy Brousseau. Prefacio a la edición en idioma español de Ricardo Cantoral. México DF, México: Reverté-Relime].
  9. D’Amore, B., & Fandiño Pinilla, M. I. (2001). Concepts et objects mathématiques. En A. Gagatsis (Ed.), Learning in mathematics and science and educational technology. Proceedings of the third intensive programme Socrates-Erasmus (pp. 111–130). Nicosia (Chipre): Intercollege.
  10. D’Amore, B., & Fandiño Pinilla, M. I. (2012). Su alcune D in didattica della matematica: designazione, denotazione, denominazione, descrizione, definizione, dimostrazione. Riflessioni matematiche e didattiche che possono portare lontano. Bollettino dei docenti di matematica, 64, 33–46.
  11. D’Amore, B., & Matteuzzi, M. (1976). Gli interessi matematici. Venezia: Marsilio.
  12. D’Amore, B., Fandiño Pinilla, M. I., & Iori, M. (2013). Primi elementi di semiotica. La sua presenza e la sua importanza nel processo di insegnamento-apprendimento della matematica. Prefacios
  13. de Raymond Duval y Luis Radford. Bologna: Pitagora. [Edición en idioma español: D’Amore,
  14. B., Fandiño Pinilla, M. I., & Iori, M. (2013). La semiótica en la didáctica de la matemática, con prefacio a la edición española de Carlos Eduardo Vasco. Bogotá: Magisterio].
  15. Douady, R. (1986). Jeux de cadres et dialectique outil-object. Recherches en didactique des mathématiques, 7(2), 5–31.
  16. Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Science Cognitives, 5(1), 37–65.
  17. Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.
  18. Duval, R. (1998a). Signe et objet (I): Trois grandes étapes dans la problématique des rapports entre représentations et objet. Annales de didactique et de sciences cognitives, 6(1), 139–163.
  19. Duval, R. (1998b). Signe et objet (II): Questions relatives à l’analyse de la connaissance. Annales de didactique et de sciences cognitives, 6(1), 165–196.
  20. Duval, R. (2006). Quelle sémiotique pour l’analyse de l’activité et des productions mathématiques? En L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [SpecialSemiotics, Culture and Mathematical Thinking [SpecialSemiotics, Culture and Mathematical Thinking Issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 9(1), 45–81.
  21. Obtenido de http://www.clame.org.mx/relime.htm
  22. Duval, R. (2009a). «Objet»: un mot pour quatre ordres de réalité irréductibles? En J. Baillé (Ed.),
  23. Du mot au concept: Objet (pp. 79–108). Grenoble: PUG.Du mot au concept: Objet (pp. 79–108). Grenoble: PUG.Du mot au concept: Objet
  24. Duval, R. (2009b). Sémiosis, pensée humaine et activité mathématique. Amazônia - Revista de educação em ciências e matemáticas, 6(11), 126–143. Obtenido de http://www.periodicos.ufpa.br/index.php/revistaamazonia/index
  25. Duval, R. (2011). Ver e ensinar a matemática de outra forma: entrar no modo matemático de pensar: os registros de representações semióticas. São Paulo: Proem.
  26. Duval, R. (2012). Quelles théories et quelles méthodes pour les recherches sur l’enseignement des mathématiques? Práxis educativa, 7(2), 305–330. doi: 10.5212/PraxEduc.v.7i2.0001
  27. Eco, U. (1984). Semiotica e filosofia del linguaggio. Torino: Einaudi.
  28. Eco, U. (1986). Sign. En T. A. Sebeok (Ed.), Encyclopedic dictionary of semiotics. Berlin: Mouton de Gruyter.
  29. Eikeland, O. (2008). The ways of Aristotle: Aristotelian phrónêsis, Aristotelian philosophy of dialogue, and action research. Bern: Peter Lang Publishers.
  30. Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, 100(1), 25–50.
  31. Husserl, E. (1900). Logische Untersuchungen. Erster Teil: Prolegomena zur reinen Logik. Halle: Niemeyer.
  32. Husserl, E. (1901). Logische Untersuchungen. Zweite Teil: Untersuchungen zur Phänomenologie und Theorie der Erkenntnis. Halle: Niemeyer.
  33. Husserl, E. (1970). Logical investigations (J. N. Findlay, Trans.). London: Routledge and Kegan Paul. (Trabajo original publicado 1900-01).
  34. Leibniz, G. W. (1840). Dialogus de connexione inter res et verba, et veritatis realitate. In J. E. Erdmann (Ed.), God. Guil. Leibnitii Opera philosophica quae exstant latina gallica germanica omnia (Vol. 1, pp. 76–78). Berlin: Sumtibus G. Eichleri.
  35. Mensch, J. R. (2001). Postfoundational phenomenology: Husserlian reflection on presence and embodiment. University Park, PA: Penn State Press.
  36. Nöth, W. (1995). Handbook of semiotics. Bloomington, IN: Indiana University Press.
  37. Platón (1992). Republica (C. Eggers Lan, Trad.). Madrid: Gredos.
  38. Radford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the learning of mathematics, 17(1), 26–33.
  39. Radford, L. (2002). The seen, the spoken and the written: A semiotic approach to the problem of objectification of mathematical knowledge. For the learning of mathematics, 22(2), 14–23.
  40. Radford, L. (2003). Gestures, speech and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical thinking and learning, 5(1), 37–70.
  41. Radford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità. La matematica e la sua didattica, 18(1), 4–23.
  42. Radford, L. (2005). La generalizzazione matematica come processo semiotico. La matematica e la sua didattica, 19(2), 191–213.
  43. Radford, L. (2006). Elementos de una teoría cultural de la objetivación. En L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [Special Issue].Semiotics, Culture and Mathematical Thinking [Special Issue].Semiotics, Culture and Mathematical Thinking Revista
  44. Latinoamericana de Investigación en Matemática Educativa, 9(1), 103–129. Obtenido de http://www.clame.org.mx/relime.htm
  45. Radford, L. (2013). Three key concepts of the theory of objectification: knowledge, knowing and learning. Journal of research in mathematics education, 2(1), 7–44. doi: 10.4471/redimat.2013.19
  46. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflection on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1), 1–36.
  47. Spinicci, P. (2002). Lezioni sulle Ricerche filosofiche di Ludwig Wittgenstein. Milano: CUEM.
  48. Stöckl, A. (1887). Handbook of the history of philosophy. Part one: Pre-Scholastic philosophy (Finlay T. A., Trans.). Dublin: M. H. Gill and Son.
  49. Versteegh, C. H. M. (1977). Greek elements in Arabic linguistic thinking. Leiden: E. J. Brill.
  50. Williams, M. (1999). Wittgenstein, Mind and Meaning: Toward a social conception of mind. LondonWittgenstein, Mind and Meaning: Toward a social conception of mind. LondonWittgenstein, Mind and Meaning: Toward a social conception of mind and New York: Routledge.
  51. Wittgenstein, L. (1913). Philosophische Grammatik. Oxford: Basil Blackwell.
  52. Wittgenstein, L. (1922). Tractatus Logico-Philosophicus (F. P. Ramsey & C. K. Ogden, Eds.). London: Routledge & Kegan Paul. (Trabajo original publicado 1921).
  53. Wittgenstein, L. (1953). Philosophische Untersuchungen (G. E. M. Anscombe & R. Rhees, Eds.). Oxford: Blackwell.
  54. Wittgenstein, L. (1958). The Blue and Brown Books. Oxford: Blackwell.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.