Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 17 No. 1 (2014): Marzo

AN APPROACH TO CHANGES IN THE MATHEMATICAL DISCOURSEGENERATED IN THE PROCESS OF DEFINING

DOI
https://doi.org/10.12802/relime.13.1711
Submitted
July 12, 2023
Published
2023-07-13

Abstract

On this work, we focus on a sociocultural perspective in order to set forth the changes that are manifested in the students’ mathematical discourse when they try to define a mathematical object. We mainly establish whether it is possible to characterize the process of changing by using the tools as a result of the perspective described above. There were fifty-one participants, students between the ages of 16 and 21. This analysis allowed us to identify different changes on the students’ mathematical discourse by the characterization of the identified relationships between their narrative and their routines manifested in the discourse. These changes have allowed us to get an approximate of the students’ learning process.

 

References

  1. Ben-Yehuda, M.. Lavy, I., Linchevski, L., & Sfard, A. (2005). Doing Wrong UIT Words: What Bars Students’ Access to Arithmetical Discourses. Journal for Research in Mathematics Education, 36(3), 176-247.
  2. Borasi, R. (1992). Learning Mathematics Through Inquiry. Portsmouth, NH: Heinemann.
  3. De Villiers, M. (1998). To teach definitions in geometry or teach to define? In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 248-255). Stellenbosch, South Africa: PME.
  4. Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70-95). Cambridge, United Kingdom: Cambridge University Press. doi.org/10.1017/CBO9781139013499.006
  5. Huerta, P. (1999). Los niveles de Van Hiele y la taxonomía SOLO: Un análisis comparado, una integración necesaria. Enseñanza de las ciencias, 17(2), 291-310.
  6. Lave, J. & Wenger, E. (1991). Situated Learning. Legitimate Peripheral Participation. New York, NY: Cambridge University Press.
  7. Mamona-Downs, J., & Downs, M. (2002). Advanced Mathematical Thinking With a Special Reference to Reflection on Mathematical Structure. In L.D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 165-195). Mahwah, NY: IRME.
  8. Matos, J. M. (1984). Van Hiele levels of preservice primary teachers in Portugal (Tese de Mestrado não publicada). Universidade de Boston, Lisboa, Portugal.
  9. Ouvrier-Buffet, C. (2004). Construction of Mathematical Definitions: An epistemological and didactical study. In M. J. Hoines & A.B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 473-480). Bergen, Norway: PME.
  10. Ouvrier-Buffet, C. (2011). A mathematical experience involving defining processes: in-action definitions and zero-definitions. Educational Studies in Mathematics, 76(2), 165-182. doi 10.1007/s10649-010-9272-3
  11. Pimm, D. (1993). Just a matter of definition. Educational Studies in Mathematics, 25(3), 261-277.
  12. Rasmunssen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing Mathematical Activity: A Practice-Oriented View of Advanced Mathematical Thinking. Mathematical thinking and learning, 7(1), 51-73. doi:10.1207/s15327833mtl0701_4
  13. Sánchez, V. & García, M. (2009). Aproximaciones socioculturales al aprendizaje matemático: el caso de definir. V Seminario sobre Entornos de Aprendizaje y Tutorización para la Formación del Profesorado de Matemáticas, 21-23 enero 2009. Barcelona, España: Universidad Autónoma de Barcelona.
  14. Sánchez, V. & García, M. (2011). Socio-Mathematical and Mathematical norms in pre-service primary teachers’ discourse. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 105-112). Ankara, Turkey: PME.
  15. Sfard, A. (2006). Participationist discourse on mathematics learning. In J. Maasz & W. Schlöglmann (Eds.), New Mathematics Education Research and Practice (pp. 153-170). Rotterdam, Netherlands: Sense Publishers.
  16. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 16(4), 565-613. doi:10.1080/10508400701525253
  17. Sfard, A. (2008). Thinking as communicating: human development, the growth of discourse, and mathematizing. Cambridge, UK: Cambridge University Press.
  18. Shir, K. & Zaslavsky, O. (2002). Students’ conceptions of an acceptable geometric definition. In A.D. Cockburn & E. Nardi (Eds.). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, 201-208.). Norwich, United Kingdom: PME.
  19. Tall, D. & Vinner, S. (1981). Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
  20. Van Dormolen, J., & Zaslavsky, O. (2003). The many facets of a definition: The case of periodicity. Journal of Mathematical Behavior, 22(1), 91-106. doi: 10.1016/S0732-3123(03)00006-3
  21. Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. Advanced Mathematical Thinking, 65, 65-81. doi: 10.1007/0-306-47203-1_5
  22. Vinner, S. & Hershkowitz, R. (1980). Concept images and common cognitive paths in the development of some simple geometrical concepts. In R. Karplus (Ed.), Proceedings of the 4th Conference of the International Group for the Psychology of Mathematics Education (pp. 177-184). Berkeley, CA: PME.
  23. Wells, G. (1999). Dialogic inquiry: Towards a socio-cultural practice and Theory of Education. Cambridge, United Kingdom: Cambridge University Press.
  24. Wenger, E. (1998). Communities of practice: learning, meaning, and identity. Cambridge, United Kingdom: Cambridge University Press.
  25. Zaslavsky, O., & Shir, K. (2005). Students’ Conceptions of a Mathematical definition. Journal for Research in Mathematics Education, 36(4), 317-346.
  26. Zazkis, R. & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies in Mathematics, 69(2), 131-148. doi: 10.1007/s10649-008-9131-7

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.