Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Artículos

Vol. 17 No 1 (2014): Marzo

UNA APROXIMACIÓN A LOS CAMBIOS EN EL DISCURSO MATEMÁTICO GENERADOS EN EL PROCESO DE DEFINIR

DOI
https://doi.org/10.12802/relime.13.1711
Soumis
juillet 12, 2023
Publiée
2023-07-13

Résumé

Dans cet article nous avons choisi la perspective socioculturelle pour traiter les changements manifestés dans le discours mathématique des étudiants qui essayent de définir un objet mathématique. En particulier on cherche à savoir s’il est possible de caractériser le processus de changement ayant comme appui les outils issus de cette perspective. Dans cette étude ont participé 51 étudiants âgés entre 16 et 21 ans. Grace à cette analyse, on a pu identifier différents types de changements dans le discours mathématique chez les étudiants d’après la caractérisation des relations identifiées entre narratives assumées et routines qui apparaissent dans le discours. Ces changements nous ont permis de mieux connaître le processus d’apprentissage des étudiants.

 

Références

  1. Ben-Yehuda, M.. Lavy, I., Linchevski, L., & Sfard, A. (2005). Doing Wrong UIT Words: What Bars Students’ Access to Arithmetical Discourses. Journal for Research in Mathematics Education, 36(3), 176-247.
  2. Borasi, R. (1992). Learning Mathematics Through Inquiry. Portsmouth, NH: Heinemann.
  3. De Villiers, M. (1998). To teach definitions in geometry or teach to define? In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 248-255). Stellenbosch, South Africa: PME.
  4. Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70-95). Cambridge, United Kingdom: Cambridge University Press. doi.org/10.1017/CBO9781139013499.006
  5. Huerta, P. (1999). Los niveles de Van Hiele y la taxonomía SOLO: Un análisis comparado, una integración necesaria. Enseñanza de las ciencias, 17(2), 291-310.
  6. Lave, J. & Wenger, E. (1991). Situated Learning. Legitimate Peripheral Participation. New York, NY: Cambridge University Press.
  7. Mamona-Downs, J., & Downs, M. (2002). Advanced Mathematical Thinking With a Special Reference to Reflection on Mathematical Structure. In L.D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 165-195). Mahwah, NY: IRME.
  8. Matos, J. M. (1984). Van Hiele levels of preservice primary teachers in Portugal (Tese de Mestrado não publicada). Universidade de Boston, Lisboa, Portugal.
  9. Ouvrier-Buffet, C. (2004). Construction of Mathematical Definitions: An epistemological and didactical study. In M. J. Hoines & A.B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 473-480). Bergen, Norway: PME.
  10. Ouvrier-Buffet, C. (2011). A mathematical experience involving defining processes: in-action definitions and zero-definitions. Educational Studies in Mathematics, 76(2), 165-182. doi 10.1007/s10649-010-9272-3
  11. Pimm, D. (1993). Just a matter of definition. Educational Studies in Mathematics, 25(3), 261-277.
  12. Rasmunssen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing Mathematical Activity: A Practice-Oriented View of Advanced Mathematical Thinking. Mathematical thinking and learning, 7(1), 51-73. doi:10.1207/s15327833mtl0701_4
  13. Sánchez, V. & García, M. (2009). Aproximaciones socioculturales al aprendizaje matemático: el caso de definir. V Seminario sobre Entornos de Aprendizaje y Tutorización para la Formación del Profesorado de Matemáticas, 21-23 enero 2009. Barcelona, España: Universidad Autónoma de Barcelona.
  14. Sánchez, V. & García, M. (2011). Socio-Mathematical and Mathematical norms in pre-service primary teachers’ discourse. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 105-112). Ankara, Turkey: PME.
  15. Sfard, A. (2006). Participationist discourse on mathematics learning. In J. Maasz & W. Schlöglmann (Eds.), New Mathematics Education Research and Practice (pp. 153-170). Rotterdam, Netherlands: Sense Publishers.
  16. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 16(4), 565-613. doi:10.1080/10508400701525253
  17. Sfard, A. (2008). Thinking as communicating: human development, the growth of discourse, and mathematizing. Cambridge, UK: Cambridge University Press.
  18. Shir, K. & Zaslavsky, O. (2002). Students’ conceptions of an acceptable geometric definition. In A.D. Cockburn & E. Nardi (Eds.). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, 201-208.). Norwich, United Kingdom: PME.
  19. Tall, D. & Vinner, S. (1981). Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
  20. Van Dormolen, J., & Zaslavsky, O. (2003). The many facets of a definition: The case of periodicity. Journal of Mathematical Behavior, 22(1), 91-106. doi: 10.1016/S0732-3123(03)00006-3
  21. Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. Advanced Mathematical Thinking, 65, 65-81. doi: 10.1007/0-306-47203-1_5
  22. Vinner, S. & Hershkowitz, R. (1980). Concept images and common cognitive paths in the development of some simple geometrical concepts. In R. Karplus (Ed.), Proceedings of the 4th Conference of the International Group for the Psychology of Mathematics Education (pp. 177-184). Berkeley, CA: PME.
  23. Wells, G. (1999). Dialogic inquiry: Towards a socio-cultural practice and Theory of Education. Cambridge, United Kingdom: Cambridge University Press.
  24. Wenger, E. (1998). Communities of practice: learning, meaning, and identity. Cambridge, United Kingdom: Cambridge University Press.
  25. Zaslavsky, O., & Shir, K. (2005). Students’ Conceptions of a Mathematical definition. Journal for Research in Mathematics Education, 36(4), 317-346.
  26. Zazkis, R. & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies in Mathematics, 69(2), 131-148. doi: 10.1007/s10649-008-9131-7

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.