Skip to main navigation menu Skip to main content Skip to site footer

Special Article

Vol. 13 No. 4(I) (2010): Número Especial /Diciembre

TEACHING DIFFERENTIALS AT ENGINEERING SCHOOLS FROM THE SOCIO-EPISTEMOLOGICAL

Submitted
January 4, 2024
Published
2010-08-11

Abstract

The content of this paper discusses the physics and mathematics teaching-learning problematic in situations where both disciplines meet in the curricular program as it happens at engineering majors. Focusing on differentials and supported by social epistemology, we affirm that an education which privileges teaching of objects does not permit that a working style on physics-mathematics can be learned by the students; that style has reveled fruitful for the construction of both disciplines. Also, this paper states that social-epistemology is an invaluable perspective of research for searching viable responses to the problems with articulation between physics and mathematics teaching.

References

  1. Arnold, V.L. (1997). On teaching mathematics. Disponible en http://www.ceremade.dauphine.fr/-msfr/articles/arnold/PRE_anglais.tex
  2. Arnold, VI. (1989). Mathematical Methods of Classical Mechanics. New York: Springer. Artigue, M. (1988). Quelques aspects de la transposition didactique de la notion de différentielle.
  3. En C, Laborde (Ed.), Actes du premier colloque franco-allemand de didactique de mathémetique et de l'informatique. Francia: La Pensée Sauvage.
  4. Artigue, M. (2003). ¿Qué se puede aprender de la investigación educativa en el nivel universitario?. Boletín de la Asociación Matemática Venezolana, 10 (2), 117-134.
  5. Bachelard, G. (2005). El compromiso racionalista. México: Siglo XXI.
  6. Bos, H.J.M. (1974). Differentials, higher-order differentials and derivatives in the Leibnizian calculus. Archive for history of exact sciences, 14(1), 1-90.
  7. Cantoral, R., Farfan R.M., Lezama, J. y Martinez-Sierra, G. (2006). Socioepistemologia y representación: algunos ejemplos. Revista Latinoamericana de Investigación en Matemática Educativa, Número especial, 83-102.
  8. Dunham, W. (2009). When Euler Met L'Hôpital. Mathematics Magazine, 82 (1), 16-25. Freudenthal, M. (1973). Mathematics as an Educational Task. Dordrecht-Holland: D Reidel. Goldblatt, R. (1998). Lectures on the Hyperreals, An Introduction to Nonstandard Analysis. New York: Springer.
  9. GRECO, Groupe Mathematiques et Physique-Enseignement Superior du Didactique du CNRS. (1989). Procedures Differentielles Dans les Enseignements de Mathematiques et de Pysique au Nieveau du Premier Cycle Universitaire. Paris: IREM, UNIVERSITE PARIS VII.
  10. Lakatos, I. (1978). Cauchy and the continuum: the significance of non-standard analysis for the history and philosophy of mathematics. En J. P. Cleave (Ed.), Mathematics, Science and Epistemology (pp. 43-60). Cambridge Univ. Press, Cambridge/London/New York/ Melbourne.
  11. Martinez Torregrosa, J. López-Gay, R. & Gras-Marti, A. (2006). Mathematics in Physics Education: Scanning Historical Evolution of the Differential to Find a More Appropriate Model for Teaching Differential Calculus in Physics. Science & Education, 15, 447-462.
  12. Ongay, F. (1996). Electromagnetismo y Formas Diferenciales. Comunicación Interna Nº. D-96-02. México: CIMAT.
  13. Pulido, R. (1998). Un estudio teórico de la articulación del saber matemático en el discurso escolar: la transposición didáctica del diferencial en la fisica y la matemática escolar (Tesis inédita de doctorado) Cinvestav-IPN, México.
  14. Pulido, R. (2004). Calculus Textbooks in the American Continent: A Guarantee for Not Understanding Physics. En McDougall, D.E. & Ross, J.A. (Eds.) Proceedings of the twenty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 823-825). Toronto: OISE/UT.
  15. Robinson, A. (1996). Non-standard Analysis. Princeton University Press, US.
  16. Salinas, P. y Alanis, J. A. (2009). Hacia un nuevo paradigma en la enseñanza del Cálculo. Revista Latinoamericana de Investigación en Matemática Educativa, 12 (3) 355-382.
  17. Salinas P., Alanis, J. A., Pulido, R., Santos, F., Escobedo, J. C. y Garza, J. L. (2002). Elementos del Cálculo. Reconstrucción conceptual para el aprendizaje y la enseñanza. México: Trillas.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.