Skip to main navigation menu Skip to main content Skip to site footer

Special Article

Vol. 13 No. 4(I) (2010): Número Especial /Diciembre

ASPECTS THAT INFLUENCE THE DEMONSTRATION CONSTRUCTION ON DYNAMIC GEOMETRY ENVIRONMENTS

Submitted
January 5, 2024
Published
2010-03-25

Abstract

In this paper are presented some reflections on geometric proving on high school. Besides, the reflections includes some others aspects which affect the proving process as the used tool (Dynamic Geometry software), the geometric object representations, the several types of justifications and some phenomena related to visualization, as the prototypes and the geometric rigidity.

References

  1. Acuña Soto, C. y Larios Osorio, V. (2008), Prototypes and learning of geometry. En A. Arcavi y N. Presmeg (Eds.), Proceedings of TSG 20 of ICME-11. México: ICMI-SMM-UANL Retrieved from http://tsg.icme11.org/document/get/193.
  2. Arzarello, E., Olivero, F., Robutti, O. y Paola, D. (1999). Dalle congetture alle dimostrazioni Una possibile continuità cognitiva. L'insegnamento della matemática e delle scienze integrate, 228, 309-338.
  3. Boero, P., Garuti, R. y Mariotti, M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. En A. Gutiérrez y L. Puig (Eds.), Proceedings of the 20 Conference of the PME, (2), 121-128.
  4. Chazan, D. (1993). High school geometry stundents' justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24(4), 359-388.
  5. De Villiers, M. (1995). An alternative introduction to proof in dynamic geometry, Micromath, //(1), 14-19.
  6. Duval, R. (1999). Argumentar, demostrar, explicar: ¿Continuidad o ruptura cognitiva? México: Pitagora Editrice.
  7. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139-162.
  8. Godino, J. D. y Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14 (3), 325-355.
  9. Kuzniak, A., Gagatsis, A., Ludwig, M. y Marchini, C. (2007). From geometrical thinking to geometrical work. En D. Pitta-Pantazi y G. Philippou (Eds.), Proceedings of the 5th CERME (pp. 955-961). Chipre: ERME.
  10. Laborde, C. y Capponi, B. (1994). Cabri Géométre constituant d'un milieu pour l'apprentissage de la notion de figure géométrique. Recherches en Didactique des Mathématiques, 14(1- 2), 165-210.
  11. Larios, V. (2005). Fenómenos cognitivos presentes en la construcción de argumentos en un ambiente de Geometría Dinámica. México: Cinvestav.
  12. Larios, V. y Acuña Soto, C. (2009). Geometrical proof in the institutional classroom environment. En G. Hanna y M. de Villiers (Eds.), Proceedings of the ICMI Study 19: Proof and Proving in Mathematics Education. Taiwán: ICMI-NTNU. Retrieved from http://ocs.library.utoronto.ca/index.php/icmi/8/paper/view/970/94.
  13. Olivero, F. (2003). The proving process within a dynamic geometry environment. Bristol, Inglaterra: Universidad de Bristol.
  14. Pedemonte, B. (2001). Some cognitive aspects of the relationship between argumentation and proof in mathematics. En M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25TH Conference of the PME, (4), 33-40. Holanda.
  15. Scaglia, S. y Moriena, S. (2005). Prototipos y estereotipos en geometria. Educación Matemática, 17(3), 105-120.
  16. Vygotski, L. S. (1979). El desarrollo de los procesos psicológicos superiores. España: Editorial Critica.

Downloads

Download data is not yet available.

Similar Articles

<< < 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.