Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 6 No. 2 (2003): Julio

MATHEMATICS TEACHING: ON THE WAY TO TRANSFORMATION?

Submitted
December 23, 2024
Published
2003-07-31

Abstract

Describing mathematics teaching is a hard task, impossible of exhaust. In order to explore teaching a specific perspective that allows to focus particular aspects is required. In secondary schools of Bogota, mathematics teachers practice observed under the lens of a conceptualization constructed with this purpose, was in a sense percibed as different from the called “traditional practice”; although it does not transform the way mathematics is taught.

References

  1. Alsina, C., Fortuny, J. y Pérez, R. (1997). ¿Por qué geometría? Propuestas didácticas para la ESO. Madrid,España: Editorial Síntesis, S. A.
  2. Andrade, L., Perry, P., Fernández, F. y Guacaneme, E. (2002). Rutas pedagógicas de las matemáticas escolares. Una mirada a la práctica del profesor (documento no publicado). Bogotá, Colombia: Una Empresa Docente.
  3. Bishop, A., y Clarkson, P.C. (1988). What values do you think you are teaching when you teach mathematics? En J. Gough y J. Mousley (Eds.), Exploring all angles (pp.30-38). Melbourne: Mathematics Association of Victoria.
  4. Cobb, P. (2000). From representations to symbolizing: Introductory comments on semiotics and mathematical learning. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 17- 36). Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.
  5. Cobb, P. y Yackel, E. (1996). Constructivist, emergent and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31, 175-190.
  6. Cooney, T. (1994). Teacher education as an exercise in adaptation. En D. Aichele y A. Coxford (Eds.), Professional development for teachers of mathematics (pp. 9-22). Reston, VA: National Council of Teachers of Mathematics.
  7. De Lange, J. (1995). Assessment: No change without problems. En T. Romberg (Ed.), Reform in school mathematics and authentic assessment (pp. 87-172). Albany, USA: State University of New York Press.
  8. Denzin, N. y Lincoln, Y. (1998). Entering the field of qualitative research. En N. Denzin y Y. Lincoln (Eds.), Strategies of qualitative inquiry (pp. 1-34). Thousand Oaks, CA: Sage Publications, Inc.
  9. Eisenhart, M. (1988). The etnographic research tradition and mathematics education research. Journal for Research in Mathematics Education, 19 (2), 99-114.
  10. Eisenhart, M. y Howe, K. (1992). Validity in educational research. En M. LeCompte, W. Millroy y J. Preissle (Eds.), The handbook of qualitative research in education (pp. 643-680). San Diego, CA: Academic Press.
  11. Emerson, R. Fretz, R. y Shaw, L. (1995). Writing ethnographic fieldnotes. Chicago, IL: The University of Chicago Press.
  12. Ernest, P. (1989a). The impact of beliefs on the teaching of mathematics. En C. Keitel (Ed.), Mathematics, Education, and Society (document series 35, pp. 99- 101). Paris: UNESCO.
  13. Ernest, P. (1989b). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15 (1), 13-33.
  14. Gravemeijer, K., Cobb, P., Bowers, J. y Whitenack, J. (2000). Symbolizing, modeling and instructional design. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 225- 274). Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.
  15. Gregg, J. (1995). The tensions and contradictions of the school mathematics tradition. Journal for Research in Mathematics Education, 26 (5), 442-466.
  16. Hewitt, D. (2002a). Lo arbitrario y lo necesario: una forma de ver el currículo de matemáticas. Revista EMA, 7 (1), 43-64.
  17. Hewitt, D. (2002b). Lo arbitrario y lo necesario: apoyo a la memoria. Revista EMA, 7 (2), 206-226.
  18. Hewitt, D. (2002c). Lo arbitrario y lo necesario: educación de la consciencia. Revista EMA, 7 (3), 310-343.
  19. Llinares, S. (2000). Intentando comprender la práctica del profesor de matemáticas. En J. Ponte y L. Serrazina (Eds.), Educaçao matemática em Portugal, Espanha e Italia. Actas da Escola de Verao-1999 (pp. 109-132). Portugal: Sociedade de Educaçao Matemática da Sociedade Portuguesa de Ciencias de Educaçao.
  20. Mason, J. (1996). Personal enquiry: Moving from concern towards research. United Kingdom: The Open University.
  21. Osterman, K.F. y Kottkamp, R.B. (1993). Reflective practice for educators. Improving schooling through professional development. California, USA: Corwin Press, Inc.
  22. Perry, P., Valero, P., Castro, M., Gómez, P. y Agudelo, C. (1998). Calidad de la educación matemática en secundaria. Actores y procesos en la institución educativa. Bogotá, Colombia: una empresa docente.
  23. Ponte, J.P., Boavida, A.M., Graça, M. y Abrantes, P. (1997). Funcionamiento de la clase de matemáticas. En Didáctica da matemática (pp. 71-95). Lisboa, Portugal: Ministerio de Educaçao, PRODEP.
  24. Quinn, M. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage Publications, Inc.
  25. Rico, L. (1995). Consideraciones sobre el currículo escolar de matemáticas. Revista EMA, 1 (1), 4-24.
  26. Rico, L. (1997). Consideraciones sobre el currículo de matemáticas para educación secundaria. En L. Rico (Coord.), La educación matemática en la enseñanza secundaria (pp. 15-38). Barcelona, España: ICE-Horsori.
  27. Romberg, T. y Kaput, J. (1999). Mathematics worth teaching, mathematics worth understanding. En E. Fenema y T. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 3-17). Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.
  28. Schoenfeld, A. (1996). Elements of a model of teaching (documento no publicado). Berkeley, USA: University of California at Berkeley.
  29. Schön, D. (1983). The reflective practitioner: How professionals think in action. New York, USA: Basic Books.
  30. Sfard, A. (2000a). On reform movement and the limits of mathematical discourse. Mathematical Thinking and Learning, 2 (3), 157-189.
  31. Sfard, A. (2000b). Symbolizing mathematical reality into being—or how mathematical discourse and mathematical objects create each other. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 37-98). Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.
  32. Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46 (1/3), 13-57.
  33. Skovsmose, O. (1999). Hacia una filosofía de la educación matemática crítica. Bogotá: una empresa docente.
  34. Skovsmose, O. (2000). Escenarios de investigación. Revista EMA, 6 (1), 3-26.
  35. Stein, M.K., Smith, M.S., Henningsen, M. y Silver, E. (2000). Implementing standards-based mathematics instruction. A casebook for professional development. New York: Teachers College Press.
  36. TIMSS Study Center (1994). Student questionnaire. Boston: The Hague.
  37. Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. En A. Coxford y A. Shulte (Eds.), The ideas of algebra, K - 12 (pp. 8-19). Reston, VA: National Council of Teachers of Mathematics.
  38. Yackel, E. (2000). Introduction: Perspectives on semiotics and instruccional design. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 1-13). Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.