Skip to main navigation menu Skip to main content Skip to site footer

Artículos

Vol. 5 No. 1 (2002): Marzo

LA ENSEÑANZA DE LA RESOLUCIÓN DE PROBLEMAS DE REGLA Y COMPÁS. DEL MUNDO DE LA PURA RESOLUCIÓN DE PROBLEMAS A LA ESCUELA MEDIA ARGENTINA: ESTUDIO DE DOS CASOS

Submitted
December 27, 2024
Published
2002-03-31

Abstract

This work focuses on several aspects of training on mathematical problem solving, particularly  in those cases where ruler and compasses are used for geometric constructions, and basically directed to the application of "heuristics methods". A theoretic model is described, which shows all the diferents elements that take part on this teaching process, and details of the model design is given. Furthermore, an example of data interpretation from obervations on teacher’s performance is supplyed in order to show the performance of the proposed model. Finally, reference to the principal contributions of this research is made, regarding theorical and methodological issues and the ourcoming results from empirical data.

References

  1. Beppo, Levi (1947). Leyendo a Euclides. Buenos Aires, Argentina: Ed. Rosario, S. A.
  2. Butts, T. (1980). Posing problems properly. En S. Krulik & R. Reys (Eds.), Problem solving in school mathematics (pp. 23-33). Reston,VA: National Council of Teachers of Mathematics.
  3. Chartnay, R. (1994). Aprender por medio de la resolución de problemas. En C. Parra & I. Saiz (Eds.), Didáctica de matemáticas: Aportes y reflexiones (pp. 51 - 63). Bs. As., Argentina: Paidós Educador.
  4. Chevallard, Y. & Jullien, M. (1991). Autour de l'enseignement de la geometrie au college (première part). Petit x, 27 (1), 41-76.
  5. Euclides (1991). Elementos. Madrid, España: Gredos.
  6. Eves, H. (1969). Estudio de las geometrías (tomo I). México: Unión Tipográfica Editorial Hispanoamericana.
  7. Filloy Yague, E. (1999). Aspectos teóricos del álgebra educativa. Colección Sociedad Mexicana de Matemática Educativa. México: Grupo Editorial Iberoamérica.
  8. Kilpatrick, J. (1985). A retrospective account of the past twenty-five years of research on teaching mathematical problem solving. En E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 1 - 15). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.
  9. Lakatos, I. (1981). El método de análisis y síntesis. En Matemáticas, ciencia y epistemología (Vol. 2). Madrid, España: Alianza Editorial.
  10. Lester, F. K. (1985). Methodological consideratios in research on mathematical problem solving instruction. En E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 41 – 69). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.
  11. Newell, A. & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ, USA: Prentice Hall.
  12. Polya, G. (l945). How to solve it. Princeton, NJ, USA: Princeton University Press [Traducción castellana de J. Zugazagoitia (1965). Cómo plantear y resolver problemas. México: Trillas].
  13. Polya, G. (1954). Mathematics and plausible reasoning (2 Vols). Princeton, NJ, USA: Princeton University Press. [Traducción castellana de J. L. Abellán (1966). Matemáticas y razonamiento Plausible. Madrid, España: Tecnos].
  14. Polya, G. (1962-1965). Mathematical discovery (2 Vols). New York, USA: John Wiley and Sons.
  15. Puig, L. (1994). Semiótica y matemáticas. Valencia, España: Episteme, Col. Eutopías.
  16. Puig, L. (1996). Elementos de resolución de problemas. Granada, España: Editorial Comares.
  17. Puig, L. & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid, España: Síntesis.
  18. Puig L. & Cerdán F. (1996). Un curso de heurística matemática para la formación del profesorado. UNO. Revista de Didáctica de las Matemáticas 8, 83-90.
  19. Scandura, J. M. (1977). Problem solving. A structural/process approach with instructional implications. New York, USA: Academic Press.
  20. Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem solving performance. Journal for Research in Mathematics Education 10, 173-187.
  21. Schoenfeld, A. H. (1980). Heuristics in the classroom. En S. Krulik & R. Reys (Eds.), Problem solving in school mathematics (pp. 9-22). Reston,VA: National Council of Teachers of Mathematics.
  22. Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: a report, recomendations and an annotated bibliography. Washington, DC, USA: Mathematical Association of America.
  23. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL, USA: Academic Press.
  24. Schoenfeld , A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. En Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York, USA: Mc Millan.
  25. Schroeder, L. & Lester, F. (1989). Developing understanding in mathematics via problem solving. En P.R. Trafton (Ed.), New directions for elementary school mathematics (pp. 31-56). Reston,VA: National Council of Teachers of Mathematics.

Downloads

Download data is not yet available.