Anderson, M., Sáenz-Ludlow, A., Zellweger, S., y Cifarelli, V. (Eds.). (2003). Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing. Ottawa: Legas.
Arzarello, F. (2004). Mathematical landscapes and their inhabitants: perceptions, languages, theories. Plenary Lecture delivered at the ICME 10 Conference. Copenhagen, Denmark. July 4-11, 2004.
Bartolini Bussi, M. G., y Mariotti, M., A. (1999). Semiotic Mediation: from History to the Mathematics Classroom. For the Learning of Mathematics, 19(2), 27-35.
Bartolini Bussi, M., y Maschietto, M. (2006). Macchine mathematiche: dalla storia alla scuola. Milano: Springer.
Berger, M. (2005). Vygotsky’s theory of concept formation and mathematics education. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Bergen, Norway, 2, 153-160.
Boero, P., Pedemonte, B., y Robotti, E. (1997). Approaching theoretical knowledge through voices and echoes: a Vygotskian perspective. Proceedings of the XXI International Conference for the Psychology of Mathematics Education . Lahti, Finland, 2, 81-88.
Borba, M., y Villareal, M. (2006). Humans-with-Media and the Reorganization of Mathematical Thinking. New York: Springer.
Bühler, K. (1979). Teoría del lenguaje. Traducido del alemán por Julián Marías. Madrid: Alianza Editorial.
Cobb, P., Yackel, E., y McClain, K. (Eds.). (2000). Symbolizing and Communicating in Mathematics Classrooms. Mahwah, NJ: Laurence Erlbaum.
D’Amore, B. (2001). Une contribution au débat sur les concepts et les objets mathématiques: la position «naïve» dans une théorie «réaliste» contre le modèle «anthropologique» dans une théorie «pragmatique». En A. Gagatsis (Ed.), Learning in Mathematics and Science and Educational Technology (Vol. 1, pp. 131-162).
Dörfler, W. (2005). Diagrammatic Thinking. Affordances and Constraints. En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign: Grounding Mathematics Education (pp. 57-66). New York: Springer.
Duval, R. (1998). Signe et objet, I et II. Annales de didactique et de sciences cognitives, IREM de Strasbourg, 6, 139-196.
Eco, U. (1976). A theory of Semiotics. Indiana: Indiana University Press. Filloy, E., y Rojano, T. (1984). La aparición del lenguaje Aritmético-Algebraico. L’Educazione Matematica, 5(3), 278-306.
Freudenthal, H. (1968). Notation Mathématique. Encyclopedia Universalis, 338-344.
Glasersfeld von, E. (1995). Radical Constructivism: A Way of Knowing and Learning. London, Wasington, D.C: The Falmer Press.
Godino, J. D., y Batanero, C. (1999). The meaning of mathematical objects as analysis units for didactic of mathematics. Paper presented at the Proceedings of the First Conference of the European Society for Research Mathematics Education.
Goldin, G. y Janvier, C. (Eds.) (1998). Representations and the psychology of mathematics education del Journal of Mathematical Behavior, Vol. 17(1) y 17(2).
Grize, J.-B. (1996). Logique naturelle et communications. Paris: Presses Universitaires de France.
Guzmán, J., y Kieran, C. (2002). The role of calculators in instrumental genesis: The case of Nicolas and factors and divisors. En A. D. Cockburn y E. Nardi (Eds.), Proceedings of the 26th International Group for the Psychology of Mathematics Education. Norwich, UK, 3, 41-48.
Hitt, F. (Ed.). (2002). Representations and Mathematics Visualization. Mexico: Departamento de Matemática Educativa, Cinvestav-IPN.
Hjelmslev, L. (1969). Prolegomena to a Theory of Language. Wisconsin: The University of Wisconsin Press.
Hoffmann, M. H. G. (2002). Peirce’s «Diagrammatic Reasoning» as a Solution of the Learning Paradox. En G. Debrock (Ed.), The Quiet Revolution: Essays on Process Pragmatism (pp. 147-174). Amsterdam et al: Rodopi Press.
Hoffmann, M. H. G., Lenhard J. y Seeger, F. (Eds.) (2005). Activity and Sign: Grounding Mathematics Education. New York: Springer.
Hoffmann, M. H. G. (2005). Signs as Means for Discoveries. Peirce and His Concepts of «Diagrammatic Reasoning», «Theorematic Deduction», «Hypostatic Abstraction», and «Theoric Transformation». En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign: Grounding Mathematics Education (pp. 45-56). New York: Springer.
Janvier, C. (Ed.). (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum.
Kaput, J., y Hegedus, S. (2004). An introduction to the profound potential of connected algebra activities: Issues of representation, engagement and pedagogy. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Bergen, Norway, 3, 129-136.
Kieran, C., y Saldanha, L. (2005). Computer algebra systems (CAS) as a tool for coaxing the emergence of reasoning about equivalence of algebraic expressions. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Melbourne, Australia, 3, 193-200.
Laborde, C., Puig, L., y Nunes, T. (1996). Language in Mathematics Education. En L. P. a. A. Gutiérrez (Ed.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education . University of Valencia, Valencia, Spain, 1, 53-84.
Leontiev, A. N. (1993). Actividad, conciencia y personalidad. México: ASBE Editorial.
Nesher, D. (1997). Peircean Realism: Truth as the Meaning of Cognitive Signs Representing External Reality. Transactions of the Charles S. Peirce Society, 33(1), 201-257.
Otte, M. (2003). Does mathematics have objects ? In what s ense ? Synthese, 134 (1-2), 181-216.
Otte, M. (en prensa). A = B: a Peircean View. En Lafayette de Moraes and Joao Queiroz. Brazil: Catholic University of Sao Paulo.
Parker, K. (1994). Peirce’s Semeiotic and Ontology. Transactions of the Charles S. Peirce Society, 30(1), 51-75.
Peirce, C. S. (1931-1958). Collected Papers, vol. I-VIII. Cambridge, Mass: Harvard University Press.
Piaget, J. (1968). La formation du symbole chez l’enfant. Neuchatel: Delachaux et Niestlé.
Piaget, J. (1970). Genetic Epistemology. New York: W. W. Norton.
Piaget, J. (1978). Problemas de psicología genética. Barcelona: Ariel.
Piattelli-Palmarini, M. (Ed.). (1982). Théories du langage, théories de l’apprentissage: le débat entre Jean Piaget et Noam Chomsky. Paris: Seuil.
Presmeg, N. C. (2005). Metaphor and Metonymy in Processes of Semiosis in Mathematics Education. En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign: Grounding Mathematics Education (pp. 105-115). New York: Springer.
Radford, L. (2002). The seen, the spoken and the written. A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23.
Radford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità [Sensible Things, Essences, Mathematical Objects and other ambiguities] (English version available at: http://laurentian.ca/educ/lradford/essences.pdf ). La Matematica e la sua didattica, 1, 4-23.
Radford, L. (2006). The Anthropology of Meaning. En A. Sáenz-Ludlow, y N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 39-65.
Radford, L. (en prensa-1). Semiótica cultural y cognición. En R. Cantoral y O. Covián (Eds.), Investigación en Matemática Educativa en Latinoamérica. Mexico.
Radford, L. (en prensa-2). Rescuing Perception: Diagrams in Peirce’s theory of cognitive activity. En Lafayette de Moraes and Joao Queiroz (Eds.), C.S. Peirce’s Diagrammatic Logic. Catholic University of Sao Paulo, Brazil.
Sáenz-Ludlow, A. (2003). A collective chain of signification in conceptualizing fractions. Journal of Mathematical Behavior, 22, 181-211.
Sáenz-Ludlow, A. (2004). Metaphor and numerical diagrams in the arithmetical activity of a fourth-grade class. Journal for Research in Mathematics Education, 1(35), 34-56.
Sáenz-Ludlow, A. (2006). Classroom interpreting games with an illustration. En A. Sáenz- Ludlow, y N. Presmeg (Eds.), Semiotic perspectives on epistemology and teaching and learning of mathematics, Special Issue, Educational Studies in Mathematics, 61, 183- 218.
Saussure, F. (1995). Cours de linguistique générale. Paris: Payot. (Primera edición, 1916).
Sfard, A. (1994). Reification as the birth of metaphor. For the Learning of Mathematics, 14(1), 44-55.
Steinbring, H. (2005). Do Mathematical Symbols Serve to Describe or Construct «Reality»? En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign: Grounding Mathematics Education (pp. 91-104). New York: Springer.
Steinbring, H., Bartolini Bussi, M., y Sierpinska, A. (1998). Language and Communication in the Mathematics Classroom. Reston, Virginia: National Council of Teachers of Mathematics.
Stjernfelt, F. (2000). Diagrams as Centerpiece of a Perican Epistemology.Transactions of the Charles S. Peirce Society, 36(3), 357-384.
Van der Veer, R. (1996). The concept of culture in Vygotsky’s Thinking. Culture and Psychology, 2, 247-263.
Van der Veer, R., y Valsiner, J. (1991). Understanding Vygotsky. Oxford Uk and Cambridge USA: Blackwell.
Vygotsky, L. S. (1971). The Psychology of Art. Cambridge and London: The M.I.T. Press (First published in 1925).
Vygotski, L. S. (1988). El desarrollo de los procesos psicológicos superiores. Barcelona: Grijalbo.
Vygotski, L. S. (1991). Obras Escogidas, Vol. 1 (Segunda edición,1997). Madrid:Visor.
Descargas
Los datos de descargas todavía no están disponibles.